首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U. Heber  M.R. Kirk 《BBA》1975,376(1):136-150
Since coupling between phosphorylation and electron transport cannot be measured directly in intact chloroplasts capable of high rates of photosynthesis, attempts were made to determine ATP2 e ratios from the quantum requirements of glycerate and phosphoglycerate reduction and from the extent of oxidation of added NADH via the malate shuttle during reduction of phosphoglycerate in light. These different approaches gave similar results. The quantum requirement of glycerate reduction, which needs 2 molecules of ATP per molecule of NADPH oxidized was found to be pH-dependent. 9–11 quanta were required at pH 7.6, and only about 6 at pH 7.0. The quantum requirement of phosphoglycerate reduction, which consumes ATP and NADPH in a 11 ratio, was about 4 both at pH 7.6 and at 7.0. ATP2 e ratios calculated from the quantum requirements and the extent of phosphoglycerate accumulation during glycerate reduction were usually between 1.2 and 1.4, occasionally higher, but they never approached 2.Although the chloroplast envelope is impermeable to pyridine nucleotides, illuminated chloroplasts reduced added NAD via the malate shuttle in the absence of electron acceptors and also during the reduction of glycerate or CO2. When phosphoglycerate was added as the substrate, reduction of pyridine-nucleotides was replaced by oxidation and hydrogen was shuttled into the chloroplasts to be used for phosphoglycerate reduction even under light which was rate-limiting for reduction. This indicated formation of more ATP than NADPH by the electron transport chain. From the rates of oxidation of external NADH and of phosphoglycerate reduction at very low light intensities ATP2e ratios were calculated to be between 1.1 and 1.4.Fully coupled chloroplasts reduced oxaloacetate in the light at rates reaching 80 and in some instances 130 μmoles · mg?1 chlorophyll · h?1 even though ATP is not consumed in this reaction. The energy transfer inhibitor phlorizin did not significantly suppress this reduction at concentrations which completely inhibited photosynthesis. Uncouplers stimulated oxaloacetate reduction by factors ranging from 1.5 to more than 10. Chloroplasts showing little uncoupler-induced stimulation of oxaloacetate reduction were highly active in photoreducing CO2. Measurements of light intensity dependence of quantum requirements for oxaloacetate reduction gave no indication for the existence of uncoupled or basal electron flow in intact chloroplasts. Rather reduction is brought about by loosely coupled electron transport. It is concluded that coupling of phosphorylation to electron transport in intact chloroplasts is flexible, not tight. Calculated ATP2e ratios were obtained under conditions, where coupling should be expected to be optimal, i.e. at low phosphorylation potentials [ATP][ADP] [Pi]. Flexible coupling implies, that ATP2e ratios should decrease with increasing phosphorylation potentials inside the chloroplasts.  相似文献   

2.
In the determination of the rates of oxygen consumption with a Clark-type oxygen electrode, and experimental error is caused by finite response time of the oxygen electrode for a rapid oxidation reaction. A theoretical equation between the observed pseudo first-order rate constant (kobs) and the true rate constant (k)
1kobs=1k+T
where T is a time constant for a first-order response of the oxygen electrode, was derived and found to hold up to k = 23 min?1 in oxidation of hydroquinone at pH 7.60–8.63.  相似文献   

3.
P Jurtshuk  L McManus 《Life sciences》1973,13(12):1725-1736
A new type of membrane-bound oxidoreductase is described that carries out an oxidative deamination reaction that specifically involves L-glutamate. This enzyme is found in a subcellular fraction of Azotobactervinelandii strain 0. It can oxidize L?(+)-glutamate using molecular oxygen and produces α-ketoglutarate and NH3 as end products. Neither NAD+ nor NADP+ are involved in this oxidation. The reaction is carried out by the membranous “R3” fraction which is obtained from sonically ruptured resting cells by differential centrifugation. In addition to O2, the electron acceptors that allowed for L-glutamate oxidation were phenazine methosulfate (PMS), K3Fe(CN)6, and 2, 6-dichloroindophenol (DCIP). This oxidation appears to be an integral part of the Azotobacter electron transport system as the L-glutamate oxidase rate is also highly sensitive to known electron transport inhibitors, i.e., 2-n-hydroxy-4-quinoline-N-oxide, cyanide, and thenoyltrifluoroacetone. Spectral absorption studies on the Azotobacter R3 electron transport fraction revealed that the cytochrome and flavoprotein (non-heme iron) components also could be reduced completely upon the addition of L-glutamate. Preliminary results suggest that this is a new type of L-glutamate oxidoreductase that does not as yet have an Enzyme Commission number and appears to be (a) a specific flavoprotein enzyme that is not a type of L-amino acid oxidase, (b) tightly bound (and functionally attached) to the Azotobacter electron transport system, and (c) capable of carrying out specifically the oxidative deamination of L-glutamate in the absence of pyridine nucleotides.  相似文献   

4.
The cell-free preparations from autotrophieally grown Pseudomonas saccharophila catalyzed the process of electron transport from H2 or various other organic electron donors to either O2 or NO3? with concomitant ATP generation. The respective PO ratios with H2 and NADH were 0.63 and 0.73, the respective PNO3? ratios were 0.57 and 0.54. In contrast, the PO and PNO3? ratios with succinate were 0.18 and 0.11, respectively. ATP formation coupled to the oxidation of ascorbate, in the absence or presence of added N,N,N′,N′-tetramethyl-p-phenylenediamine or cytochrome c, could not be detected. Various uncouplers inhibited phosphorylation with either O2 or NO3? as terminal electron acceptors without affecting the oxidation of H2 or other substrates. The NADH oxidation at the expense of O2 or NO3? reduction as well as the associated phosphorylation were inhibited by rotenone and amytal. The aerobic and anaerobic H2 oxidation and coupled ATP synthesis, on the other hand, was unaffected by the flavoprotein inhibitors as well as by the NADH trapping system. The NADH, H2, and succinate-linked electron transport to O2 or NO3? and the associated phosphorylations were sensitive, however, to antimycin A or 2-n-nonyl-4-hydroxyquino-line-N-oxide, and cyanide or azide. The data indicated that although the phosphorylation sites 1 and II were associated with NADH oxidation by O2 or NO3?, the energy conservation coupled to H2 oxidation under aerobic or anaerobic conditions appeared to involve site II only.  相似文献   

5.
Rat heart mitochondria oxidizing pyruvate (in the presence of 20% as much malate) took up nearly the amount of oxygen required for complete oxidation to CO2. Thus pyruvate, a physiological substrate of the citrate cycle, is oxidized through the entire cycle in these mitochondria, and they seem suitable for study of regulation of integrated mitochondrial energy transduction. By addition of graded amounts of hexokinase or pyruvate kinase to the suspending medium (in the presence of excess glucose or phosphoenolpyruvate), a wide range of steady-state values of the ATPADP concentration ratio was obtained. At a constant concentration of phosphate, the steady-state rate of oxygen uptake by rat heart mitochondria oxidizing pyruvate was a function of the adenylate energy charge or of the ATPADP ratio, and relatively independent of the absolute concentrations of these nucleotides. The oxygen uptake rates typically spanned a range of about 20-fold. At very high values of the ATPADP ratio, the rate of oxygen uptake is much lower than the “state 4” rate seen after added ADP has been phosphorylated. This result suggests that “state 4” respiration, at least in these freshly prepared mitochondria, measures the rate at which ADP is made available by ATPase activity, rather than indicating uncoupling of electron transport from phosphorylation. The concentration of orthophosphate affected the rate of oxygen uptake and the pattern of response to the ATPADP ratio or the energy charge, but the effects did not seem interpretable in terms of the mass-action expression for hydrolysis of ATP, (ATPADP) (Pi.  相似文献   

6.
Incubation of rat liver mitochondria with tetrahydropterin results in ATP production with a P:O ratio of 0.85, consistent with the entry of reducing equivalents into the mitochondrial electron transport chain at cytochrome c. No evidence for an enzymatic reduction of cytochrome c was found. The reduction of either soluble or mitochondrial cytochrome c was not diminished by superoxide dismutase or anaerobic conditions, indicating that the reaction is not dependent on the autoxidation of the reduced pterin and the formation of an active species of oxygen. The experiments indicate a potential pathway for the production of ATP coupled to the oxidation of NADPH through the activity of NADPH-dependent pteridine reductases.  相似文献   

7.
Oxygen consumption in photosystem II (PSII) preparations in the light was 2 mol O2/h per mg Chl at weakly acidic and at neutral pH values. It increased fourfold to fivefold at pH 8.5-9.0. The addition of either artificial electron donors for PSII such as MnCl2 or diphenylcarbazide, or diuron as an inhibitor of electron transfer from QA, the primary bound quinone acceptor, to QB, the secondary bound quinone acceptor of PSII, resulted in a decrease in oxygen consumption rate at basic pH to value close to ones measured at pH 6.5. Such additions did not affect oxygen consumption at lower pH values. The induction of variable chlorophyll fluorescence yield in the light differed greatly at pH 6.5 and 8.5. While at pH 6.5 the fluorescence yield, after an initial fast rise almost to Fmax, only slightly decreased, at pH 8.5 after such a rise it dropped promptly to a low value. The additions of the artificial electron donors at pH 8.5 resulted in the induction kinetics close to that observed at pH 6.5. These data indicate impairment of electron donation to P680+ that could be caused by damage to the water oxidation system at basic pH values. In experiments with PSII preparations treated with Tris to destroy the water-oxidizing complex, photoconsumption of oxygen in the entire pH region was close to the values in untreated preparations at basic pH. In untreated preparations the rate of light-induced oxygen consumption decreased in the presence of catalase, which decomposes H2O2, as well as in the presence of electron acceptor potassium ferricyanide. From these data it is suggested that the light-induced oxygen consumption in PSII is caused by two processes, by an interaction of O2 with organic radicals, which were formed due to oxidation of components of the donor side of this photosystem (proteins, lipids, pigments) by cation-radical P680+, as well as by oxygen reduction by still unidentified components of PSII.  相似文献   

8.
K.S. Cheah  J.C. Waring 《BBA》1983,723(1):45-51
The effect of trifluoperazine on the respiration of porcine liver and skeletal muscle mitochondria was investigated by polarographic and spectroscopic techniques. Low concentrations of trifluoperazine (88 nmol/mg protein) inhibited both the ADP- and Ca2+-stimulated oxidation of succinate, and reduced the values of the respiratory control index and the ADPO and Ca2+O ratio. High concentrations inhibited both succinate and ascorbate plus tetramethyl-p-phenylenediame (TMPD) oxidations, and uncoupler (carbonyl cyanide p-trifluromethoxyphenylhydrazone) and Ca2+-stimulated respiration. Porcine liver mitochondria were more sensitive to trifluoperazine than skeletal muscle mitochondria. Trifluoperazine inhibited the electron transport of succinate oxidation of skeletal muscle mitochondria within the cytochrome b-c1 and cytochrome c1-aa3 segments of the respiratory chain system. 233 nmol trifluoperazine/mg protein inhibited the aerobic steady-state reduction of cytochrome c1 by 92% with succinate as substrate, and of cytochrome c and cytochrome aa3 by 50–60% with ascorbate plus TMPD as electron donors. Trifluoperazine can thus inhibit calmodulin-independent reactions particularly when used at high concentrations.  相似文献   

9.
Studies of electron and proton transport in chloroplast preparations (Type D) from spinach (Spinacea oleracea L.) yield three basic results. First, in electron transport catalyzed by methyl viologen from water to oxygen at pH 7.6, the quantum requirement for electron transport (hve?) was 2.2, while the corresponding requirement for proton transport (hvH+) was 1.2. Second, the electron and proton quantum requirements were relatively independent of the individual chloroplast preparation or certain components of the resuspension medium, but did depend upon the reaction medium's initial pH. Third, measurable electron and proton transport did not occur under 715-nm illumination, nor did such activities occur in the presence of DCMU under 645-nm illumination when methyl viologen was used as the electron transport cofactor. These experimental results reconcile the quantum requirement of proton transport with Mitchell's chemiosmotic theory for chloroplast energy transduction and resolve a long standing controversy regarding the quantum requirement in chloroplast thylakoids.  相似文献   

10.
When ferrocytochrome c reacts with delipidated cytochrome oxidase under conditions which prevent oxidation, one proton is taken up per molecule of ferrocytochrome c bound to cytochrome oxidase. When ferricytochrome c reacts with delipidated Complex III, one proton is released per molecule of ferricytochrome c bound to Complex III. From these data it can be concluded that the oxidation of ferrocytochrome c by cytochrome oxidase leads to the release of a proton and an electron, whereas the reduction of ferricytochrome c by Complex III leads to the uptake of a proton and an electron. Thus ferrocytochrome c like QH2 and NADH is both an electron and proton donor, and ferricytochrome c like Q and O2 is both an electron and proton acceptor. The pattern for the three mitochondrial electron transfer sequences NADH → Q, QH2 → ferricytochrome c and ferrocytochrome c → O2 involves separation of an electron and proton on the side of the membrane where electron transfer is initiated and recombination of an electron and a proton in the terminal acceptor on the side of the membrane where electron transfer terminates.  相似文献   

11.
We report the resonance Raman spectra of cytochrome c oxidase, both solubilized and in electron transport particles using laser excitation near the Soret band. As in the spectra of other hemoproteins, such as cytochrome c, the shape and intensity of a number of bands change when the oxidation state is varied. However, one of the hemes of solubilized cytochrome c oxidase shows redox behavior which is anomalous. Spectra of electron transport particles are dominated by cytochrome c oxidase. There are, however, definite differences between spectra of solubilized cytochrome c oxidase and electron transport particles in the oxidized states.  相似文献   

12.
Mixtures of cytochrome c oxidase and cytochrome c have been titrated by coulometrically generated reductant, methyl viologen radical cation, and physiological oxidant, O2. Charge distribution among the heme components in mixtures of these two redox enzymes has been evaluated by monitoring the absorbance changes at 605 and 550 nm. Differences in the pathway of the electron transfer process during a reduction cycle as compared to an oxidation cycle are indicated by variations found in the absorbance behavior of the heme components during successive reductive and oxidative titrations. It is apparent that the potential of the cytochrome a heme is dependent upon whether oxidation or reduction is occurring.  相似文献   

13.
Sally Reinman  Paul Mathis 《BBA》1981,635(2):249-258
The influence of temperature on the rate of reduction of P-680+, the primary donor of Photosystem II, has been studied in the range 5–294 K, in chloroplasts and subchloroplasts particles. P-680 was oxidized by a short laser flash. Its oxidation state was followed by the absorption level at 820 nm, and its reduction attributed to two mechanisms: electron donation from electron donor D1 and electron return from the primary plastoquinone (back-reaction).Between 294 and approx. 200 K, the rate of the back-reaction, on a logarithmic scale, is a linear function of the reciprocal of the absolute temperature, corresponding to an activation energy between 3.3 and 3.7 kcal · mol?1, in all of the materials examined (chloroplasts treated at low pH or with Tris; particles prepared with digitonin). Between approx. 200 K and 5 K the rate of the back-reaction is temperature independent, with t12 = 1.6 ms. In untreated chloroplasts we measured a t12 of 1.7 ms for the back-reaction at 77 and 5 K.The rate of electron donation from the donor D1 has been measured in darkadapted Tris-treated chloroplasts, in the range 294–260 K. This rate is strongly affected by temperature. An activation energy of 11 kcal · mol?1 was determined for this reaction.In subchloroplast particles prepared with Triton X-100 the signals due to P-680 were contaminated by absorption changes due to the triplet state of chlorophyll a. This triplet state has been examined with pure chlorophyll a in Triton X-100. An Arrhenius plot of its rate of decay shows a temperature-dependent region (292–220 K) with an activation energy of 9 kcal · mol?1, and a temperature-independent region (below 200 K) with t12 = 1.1 ms.  相似文献   

14.
(1) In isolated chloroplasts (class B) electron flow is controlled mainly by the intrathylakoid pH (pHin). A decrease in pHin due to the light-driven injection of protons inside the thylakoid leads to the retardation of electron flow between two photosystems. This effect can be abolished by uncouplers or under photophosphorylation conditions (addition of Mg2+-ADP with Pi); Mg2+-ATP does not influence the steady-state rate of electron flow, (2) The steady-state pH difference, ΔpH, across the thylakoid membrane was estimated from quantitative analysis of the rate of P-700+ reduction. In chloroplasts, without adding Mg2+-ADP, ΔpH increases from 1.6 to 3.2 as the external pH rises from 6 to 9.5. Under the photophosphorylation conditions, ΔpH decreases showing a minimum at the external pH 7.5 (ΔpH ? 0.5–1.0). (3) The value of photosynthetic control, K, measured as the ratio of the steady-state rates of P-700+ reduction in the presence of Mg2+-ADP (with Pi) and without adding Mg2+-ADP is dependent on external pH variations, showing a maximum value of K ? 3.5 at pHout 7.5. This pH dependence coincides with that of the ADP-stimulated ΔpH decrease. (4) Experiments with spin labels provide evidence that the light-induced changes in the thylakoid membrane are sensitive to the addition of uncouplers and are affected only slightly by the addition of Mg2+-ADP and Pi.  相似文献   

15.
John D. Mills  Peter Mitchell 《BBA》1984,764(1):93-104
Thiol modulation of the chloroplast protonmotive ATPase (CF0-CF1) by preillumination of broken chloroplasts in the presence of dithiothreitol (or preillumination of intact chloroplasts in the absence of added thiols) had the following effects on photophosphorylation. (1) When assayed at pH 8 and saturating light, the initial rate of photophosphorylation was increased by 10–40%. There was an accompanying increase in the rate of coupled electron transport with no significant change in the overall P2e ratio. (2) On lowering the pH of the assay medium to pH 7, the stimulatory effect of thiol modulation on photophosphorylation and coupled electron flow was enhanced. At pH 7, there was also a small increase in P2e ratio. (3) Addition of a non-saturating amount of uncoupler to the assay medium enhanced the stimulatory effect of thiol modulation on photophosphorylation. In the presence of 1 mM NH4Cl, there was only a small increase in coupled electron flow and a correspondingly larger increase in P2e ratio. (4) Lowering the light intensity, or inhibiting electron transport, diminished the stimulatory effect of thiol modulation on photophosphorylation, coupled electron transport and P2e ratio. (5) Under all the above conditions, the ΔpH maintained across the thylakoid membrane was lower after thiol modulation, even when photophosphorylation markedly increased in rate. (6) Thiol modulation of CF0-CF1 increased the observed Michaelis constant for ADP (Km(ADP)) and the apparent maximum rate (Vapp of photophosphorylation by the same factor, so that ratio VappKm was not altered. VappKm was also unaffected by changing the medium pH, but was significantly decreased upon addition of uncouplers to the medium. These results indicate that the observed rate of ATP synthesis catalysed by thiol demodulated chloroplasts is limited kinetically by the fraction (α) of enzyme molecules that are active during photophosphorylation. A model based on a dual pH optimum requirement for activation of CF0-CF1 is presented to explain the dependence of α on ΔpH. Thiol modulation of CF0-CF1 is proposed to stimulate photophosphorylation by causing the enzyme to become active over a lower range of ΔpH, thereby reducing the kinetic limitation on ATP synthesis imposed by the activation process.  相似文献   

16.
O2 uptake in spinach thylakoids was composed of ferredoxin-dependent and -independent components. The ferredoxin-independent component was largely 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) insensitive (60%). Light-dependent O2 uptake was stimulated 7-fold by 70 μM ferredoxin and both uptake and evolution (with O2 as the only electron acceptor) responded almost linearly to ferredoxin up to 40 μM. NADP+ reduction, however, was saturated by less than 20 μM ferredoxin. The affinity of O2 uptake for for O2 was highly dependent on ferredoxin concentration, with K12(O2) of less than 20 μM at 2 μM ferredoxin but greater than 60 μM O2 with 25 μM ferredoxin. O2 uptake could be suppressed up to 80% with saturating NADP+ and it approximated a competitive inhibitor of O2 uptake with a Ki of 8–15 μM. Electron transport in these thylakoids supported high rates of photophosphorylation with NADP+ (600 μmol ATP/mg Chl per h) or O2 (280 μmol/mg Chl per h) as electron acceptors, with ATP2e ratios of 1.15–1.55. Variation in ATP2e ratios with ferredoxin concentration and effects of antimycin A indicate that cyclic electron flow may also be occurring in this thylakoid system. Results are discussed with regard to photoreduction of O2 as a potential source of ATP in vivo.  相似文献   

17.
Luciana Rosa  D.O. Hall 《BBA》1976,449(1):23-36
1. The electron transport in isolated chloroplasts with silicomolybdate as electron acceptor has been reinvestigated. The silicomolybdate reduction has been directly measured as ΔA750 or indirectly as O2 evolution (in the presence or absence of ferricyanide).2. Silicomolybdate-dependent O2 evolution is inhibited to a similar extent by 3-(3,4-dichlorophenyl) 1, 1-dimethylurea (DCMU) or dibromothymoquinone (DBMIB), indicating the existence of two different sites of silicomolybdate reduction: one before the DCMU block (i.e. at Photosystem II) and one after the DBMIB block (i.e. at Photosystem I).3. Silicomolybdate-dependent O2 evolution is coupled to ATP synthesis with an ATP2e? ratio of 1.0 to 1.1. The presence of ferricyanide inhibits this ATP synthesis (ATP2e? ratio then is about 0.3).4. Silicomolybdate-dependent O2 evolution is also coupled to ATP-synthesis in the presence of DCMU with an ATP2e? ratio of 0.6–0.8 characteristic of Site II; in this case the electron transport itself is not affected by uncouplers or energy-transfer inbihitors.5. The data are interpreted as a further demonstration that the water-splitting reaction is responsible for the conservation of energy at Photosystem II.  相似文献   

18.
F.G. Hempel  F.F. Jöbsis 《Life sciences》1979,25(13):1145-1151
The reduction-oxidation reactions of NADH and cytochrome aa3 to incipient oxygen insufficiency caused by nitrogen ventilation or hemorrhagic hypotension were examined in the exposed cerebral cortex of the cat. A comparison of the onset of redox changes with each procedure shows that cytochrome aa3 reduction precedes the reduction of mitochondrial NAD. This constitutes evidence that, in the living brain, NADH maintains its resting oxidation state at lower cellular oxygen tensions than cytochrome aa3 does, consistent with the differences in oxygen affinity these respiratory chain components exhibit during oxygen titration in vitro.  相似文献   

19.
Addition of 1mM ascorbate to isolated chloroplasts with methyl viologen (MV) as electron acceptor trebled the rate of oxygen uptake and decreased the ADPO ratio to a third of that with no ascorbate present. These effects of ascorbate were reversed by superoxide dismutase (SOD), which in the absence of ascorbate had little effect on O2 uptake or ADPO ratio. A chloroplast-associated SOD activity equivalent to 500 units/mg chlorophyll was detected. The effects of ascorbate and SOD on O2 uptake were similar in both coupled and uncoupled chloroplasts. The results are consistent with the hypothesis that ascorbate stimulates O2 uptake by reduction of superoxide, which is formed by autoxidation of the added electron acceptor (MV), and which dismutates in the absence of ascorbate. Ascorbate does not seem to stimulate O2 uptake by replacing water as the photosystem II donor.  相似文献   

20.
Hybrids were constructed between E. coli K12 unc? mutants uncoupled in oxidative phosphorylation, and thus defective in ATP biosynthesis, and an F′ plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Examination of these hybrids showed that expression of nif+Kp genes in E. coli K12 does not require coupling of oxidative phosphorylation but needs the contribution of an anaerobic electron transport system involving fumarate reduction. The nifKp cluster of genes does not contain functions able to complement a defective Mg2+-ATPase aggregate but does contain a function(s) which appears to interact with the uncB? mutant over the formation of a redox system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号