首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IndividualEncarsia formosa parasitoids were observed continuously until the parasitoids flew away, either on clean tomato leaflets, on leaflets with honeydew, or on leaflets with unparasitized and parasitized whitefly larvae. Encounters with unparasitized and parasitized whitefly larvae, and contact with honeydew arrested the parasitoids on the leaflet. The walking speed increased linearly from 0.179 to 0.529 mm/s between 15 and 25–30°C. The walking activity showed another relationship with temperature: it was below 10% at 15 and 18°C, and increased to about 75% at 20, 25 and 30°C. It was not affected by host encounters or by 1 to 4 ovipositions. The total handling time of hosts was between 1.8–21.8% of the total time on the leaflet. Self-superparasitism was not observed. Conspecific-superparasitism did occur in 14% of the encounters with hosts containing a parasitoid egg, but was not observed anymore when the parasitoid egg had hatched. Experienced parasitoids superparasitized as often as naive females. The foraging behaviour ofE. formosa from landing on a leaf until departure has now been quantified and is discussed.  相似文献   

2.
Adult longevity, developmental time and juvenile mortality ofEncarsia formosa Gahan (Hymenoptera:Aphelinidae) parasitizing the Poinsettia-strain ofBemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Poinsettia (Euphorbia pulcherrima Willd.) were investigated in laboratory experiments at three temperatures: 16 °C, 22 °C and 28 °C. Furthermore, the parasitoid's preference for different larval stages of the whitefly was determined at 24.5 °C. The lifespan ofE. formosa decreased with temperature from one month at 16 °C to nine days at 28 °C. A lower temperature threshold of 11 °C for adult development was found. The development of juvenile parasitoids inB. tabaci lasted more than two months at the lowest temperature, but was only 14 days when temperature was 28 °C. The lower temperature threshold for immature development was 13.3 °C, yielding an average of 207 day-degrees for the completion of development into adults. Juvenile mortality was high, varying from about 50% at 16 °C to about 30% at 22 °C and 28 °C.E. formosa preferred to oviposit in the 4th instar and prepupal stages ofB. tabaci followed by the 2nd and 3rd instars. The preference for the pupal stage was low. The parasitoid used all instars of the whitefly for hostfeeding, with no apparent differences between the stages. The average duration of the oviposition posture was four minutes. Demographic parameters were calculated from life tables constructed from the data. The intrinsic rate of increase (r m) and the net reproductive rate (R 0) increased with temperature from 0.0279 day−1 at 16 °C to 0.2388 day−1 at 28 °C and from about 12 at 16 °C to about 66 at 28 °C, respectively.  相似文献   

3.
The interaction between the entomopathogenic fungusAschersonia aleyrodis and the parasitoidEncarsia formosa on greenhouse whitefly as a host organism was studied, in particular, the survival of the parasitoid after treatment of parasitized hosts with fungal spores. The mean number of parasitized black pupae per parasitoid produced at 25°C was significantly reduced after spore treatment in the first three days following parasitization. Spore treatment four, seven or ten days after parasitization resulted in a mean number of parasitized pupae not significantly different from the number of black pupae in the control. The rather sudden change from low to high survival of parasitized hosts when treated with spores four days after parasitization in spite of high numbers of infected unparasitized larvae, coincided with the hatching of the parasitoid larva from the egg inside the host. Possible reasons for this decrease in susceptibility to infection after parasitoid egg hatch, such as induced changes in host cuticle or haemolymph, are discussed. Parasitoids emerged from treated hosts did not show differences in reproduction compared with parasitoids emerging from untreated hosts. Both natural enemeies of whitefly are compatible to a great extent.  相似文献   

4.
Coexistence of two solitary ectoparasitoids of bruchids may be the result of counter-balanced competition. Some strategies in interspecific competition at the extrinsic level of female behaviour are identified.Dinarmus basalis (Rondani) (Hymenoptera; Pteromalidae) has adapted an evasion strategy to avoid competition. Females ofD. basalis show interspecific discrimination against hosts parasitized byEupelmus vuilleti Crawford (Hymenoptera; Eupelmidae) and lay fewer eggs in the presence of females or hosts parasitized by the latter.Eupelmus vuilleti has adapted an aggressive strategy. In contrast toD. basalis, E. vuilleti concentrates her ovipositions on hosts already parasitized byD. basalis. Females ofE. vuilleti preferably use oviposition holes made by other parasitoids, and are able to kill eggs and larvae ofD. basalis selectively by thrusts of their ovipositor (ovicide and larvicide). Furthermore,E. vuilleti can act as a facultative hyperparasitoid on older larvae ofD. basalis. The number ofE. vuilleti offspring is not affected by the presence ofD. basalis on a host. Our study does not provide insight in the process of larval competition.
Résumé La coexistence de deux ectoparasito?des solitaires de Bruchidés peut resulter de compétition contrebalancée (Zw?lfer, 1971). Quelques stratégies en situation de compétition interspécifique ont été indentifiées au niveau (extrinsèque) du comportement de femelles.Dinarmus basalis (Rondani) (Hymenoptera; Pteromalidae) a développé une stratégie d'évitement de la compétition. Les femelles deD. basalis montrent une capacité à reconna?tre les h?tes parasités parEupelmus vuilleti Crawford (Hymenoptera; Eupelmidae), et pondent moins d'œufs en présence des femelles d'E. vuilleti ou des h?tes parsités par cette espèce.Eupelmus vuilleti a adapté une stratégie aggressive. Au contraire deD. basalis, E. vuilleti concentre sa ponte sur les h?tes déjà parasités parD. basalis. Les femelles d'E. vuilleti utilisent préférentiellement les orifices de ponte pratiqués par les autres parasito?des. Elles sont alors capables de tuer grace à l'ovipositeur les œufs et les larves deD. basalis (ovicide et larvicide). De plus,E. vuilleti est capable d'hyperparasiter les larves de dernier stade deD. basalis. Le nombre de descendants d'E. vuilleti n'est pas affecté par la présence deD. basalis sur un h?te. Notre étude expérimentale n'a pas permis l'étude du mécanisme de la compétition larvaire.
  相似文献   

5.
Successful control of greenhouse whitefly may be achieved by complementary activity of the parasitoidEncarsia formosa and the fungusAschersonia aleyrodis. One way to obtain an additive mortality effect of both entomopathogen and parasitoid would be achieved by the selection of healthy hosts by the parasitoid and rejection of fungus-infected hosts. Third and fourth instar larvae ofTrialeurodes vaporariorum which had been treated with a spore suspension ofA. aleyrodis 0, 4, 7, 10 or 14 days beforehand, were presented to female parasitoids. The parasitoids adopted the oviposition posture on untreated hosts as well as on treated hosts, irrespective of the different stages of infection in the hosts. However, significantly more hosts were parasitized byE. formosa in the control treatment than in the fungal treatment. The parasitoids offered treated hosts, showed rejection behaviour after probing on hosts showing detectable signs of infection (containing hyphal bodies or mycelium in the haemolymph). For instance, when hosts were offered seven days after spore treatment, the parasitoids showed an oviposition posture on a total of 83 (95.4%) out of 87 infected larvae, but laid only 4 eggs (4.6%). In contrast, on 48 (94.1%) out of 51 noninfected (or showing no detectable signs of infection) hosts an oviposition posture was adopted and 40 eggs (78.4%) were found after dissection. When infected hosts were encountered the oviposition posture lasted less than 1′40″ while rejection of non-infected hosts occurred after more than 1′40″. Other experiments were carried out offering treated hosts for 24 h to the parasitoids. The hosts were dissected afterwards. Again, significantly more eggs were laid in the non-infected hosts. When hosts were parasitized shortly after fungal spore treatment they were colonized by the fungus and the parasitoids did not develop. Transmission of the entomopathogen after probing infected hosts was observed to a limited extent. In conclusion,A. aleyrodis andE. formosa can be used together in a glasshouse situation. The parasitoid will be most effective when introduced more than seven days after application ofA. aleyrodis, because from that time onwards it is able to detect and reject fungus-infected hosts.  相似文献   

6.
The ovipositional patterns of the heteronomous hyperparasitoid Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) in the presence of its primary host Bemisia argentifolii Bellows & Perring (Hemiptera: Aleyrodidae), and in the presence or absence of conspecific and heterospecific secondary hosts (Encarsia formosa Gahan andEretmocerus mundus Mercet; Hymenoptera: Aphelinidae) were examined to assess host species preferences. Host preferences by heteronomous hyperparasitoids may affect the relative abundance of co-occurring parasitoid species and may influence host population suppression by the parasitoid community. Four combinations of hosts were tested: (1) B. argentifolii, E. mundus, and E. formosa, (2) B. argentifolii, E. formosa, and E. pergandiella, (3) B. argentifolii, E. mundus, and E. pergandiella, and, (4) B. argentifolii, E. mundus, E. formosa, and E. pergandiella. Arrays of hosts (24) were constructed in Petri dishes using leaf disks, each bearing one host. Thirty arrays of each host combination were exposed to single females for 6 h. All hosts were dissected to determine number of eggs per host. Encarsia pergandiella parasitized E. formosa hosts as frequently as E. mundus hosts. However, E. pergandiella parasitized either of these heterospecific hosts more frequently than conspecific hosts in treatments including two secondary host species. When a third parasitoid species was included in host arrays, E. pergandiella parasitized conspecific hosts as frequently as heterospecific hosts. Developmental stage of the hosts did not significantly influence host species selection by E. pergandiella. Our results indicate that host selection and oviposition by heteronomous hyperparasitoids like E. pergandiella, vary with the composition of hosts available for parasitization, and suggest a preference for heterospecific over conspecific secondary hosts.  相似文献   

7.
Recent population dynamic theory predicts that disruption of biological control may occur when one parasitoid species' superiority in intrinsic competition is associated with a lower ability to find and exploit hosts (i.e., ability in extrinsic competition). One might expect such a trade-off, for instance, if parasitoids with larger (and fewer) eggs are more likely to prevail in intrinsic competition than species with smaller (and more numerous) eggs. We tested the idea that relative egg size could be used to predict the outcome of intrinsic competition in two closely related endoparasitoids, Encarsia pergandiella Howard and Encarsia formosa Gahan. Contrary to expectation, the parasitoid species with smaller eggs, E. pergandiella, prevailed in intrinsic competition, regardless of the order that hosts were exposed to the two species. In a literature survey, we found four studies of competing pairs of endoparasitoid species for which: (a) egg size estimates were available and (b) one species was consistently superior in intrinsic competition. In three of the four studies, the small-egged species prevailed in intrinsic competition, as we also found. Although E. formosa lost in intrinsic competition, this species negatively affected E. pergandiella's progeny production by host feeding on and killing hosts containing E. pergandiella eggs. E. formosa females also host fed on conspecific-parasitized hosts. As a mechanism of both intra- and interspecific interference competition, host feeding on parasitized hosts contradicts assumptions about the nature of interference competition in existing population dynamics models.  相似文献   

8.
Interaction between an entomopoxvirus (PsEPV) and a gregarious braconid endoparasitoid,Cotesia kariyai,inPseudaletia separatalarvae showed that infection of larvae with PsEPV was deleterious to the development and survival ofC. kariyai.The survival and development ofC. kariyaiin PsEPV-infectedP. separatalarvae depended on the length of time between parasitization and viral infection. No parasitoid larvae emerged from PsEPV-infected hosts when host larvae were exposed simultaneously to parasitization and PsEPV inoculation whereas more than 80% of the hosts produced parasitoids when PsEPV was administered 5 days postparasitization.C. kariyailarvae in PsEPV-infected hosts showed a retarded development, shrank, and died about 8 days after viral exposure. Virion-free plasma from PsEPV-infectedP. separatalarvae was toxic to the parasitoid larvae even up to a dilution level of 32 when it was injected intrahemocoelically into the host larvae. Development of parasitoids in hosts that were simultaneously parasitized and injected with the virion-free plasm never progressed beyond the egg stage. The parasitizedP. separatalarvae injected with the virion-free plasma did not pupate and died within 30 days after injection.  相似文献   

9.
The detection of, and response to, parasitized hosts by female parasitoids can involve a number of complex phenomena, including the ability of females to discriminate between unparasitized and parasitized hosts, the physiological state of females, and the nature and longevity of the cues they are detecting. The discriminatory ability of Opius dimidiatus,a solitary endoparasitoid of Liriomyza trifoliiwas examined. Experiments showed, first, that when presented with a choice of unparasitized hosts and hosts which they had previously parasitized, O. dimidiatusfemales could discriminate between them, both upon encounter (before probing) and after probing with the ovipositor. It was further demonstrated that the detection of parasitized hosts was time dependent: females could discriminate on the basis of antennal examination for up to 2.5 h after the first egg was laid. Postprobing discrimination lasted for up to 3.5 h. Some of the causal and evolutionary factors resulting in superparasitism are discussed.  相似文献   

10.
Encarsia formosa Gahan (Hymenoptera: Aphelinidae), a thelytokous parasitoid, is an important biological control agent of whiteflies because of its outstanding reproduction and host‐feeding ability. In this study, we evaluated the parasitism, host feeding and developmental time of E. formosa populations reared on Trialeurodes vaporariorum (Westwood) (EFT) or on Bemisia tabaci (Gennadius) (EFB) when different nymphal instars of the castor whitefly, Trialeurodes ricini (Misra), were offered as hosts, with an aim to understand the preference of the parasitoid on nymphal instars of T. ricini. Experiments were conducted on castor bean plants at 26 ± 2°C, 50–60% RH and 16 : 8 (L : D) photoperiod. The results showed that E. formosa successfully oviposited and fed on all nymphal instars of T. ricini. However, numbers of the first instars fed on by the E. formosa populations reared on T. vaporariorum (EFT) and B. tabaci (EFB) were significantly greater (45.9 and 31.3, respectively) than those of the second (EFT: 30.4 and EFB: 15.8), the third (EFT: 22.4 and EFB: 13.2) and the fourth nymphal instars (EFT: 6.0 and EFB: 3.8). The number of T. ricini nymphs parasitized by E. formosa varied significantly among different instars, and the parasitism rates on the first instar (EFT: 15.2; EFB: 7.7) and fourth instar (EFT: 19.3; EFB: 4.9) were greater than those on the second and third instars. Encarsia formosa reared on T. vaporariorum had a significantly higher host feeding and ovipositing potential on T. ricini than EFB. When parasitizing the fourth instar nymphs, E. formosa completed development in a significantly shorter time (12.9 day) than when ovipositing in other instars (17.8–19.1 day). These results showed that EFT had a better host adaption than EFB. The information from this study should be useful for us to better understand the performance and nymphal preference of E. formosa from T. vaporariorum and B. tabaci when they parasitized and fed on T. ricini, and the interactions of parasitoids with different host whitefly species.  相似文献   

11.
The foraging behavior of Amitus fuscipennis MacGown & Nebeker and Encarsia formosa Gahan was studied on tomato leaflets with 20 Trialeurodes vaporariorum (Westwood) larvae in the first or third stage. Ten of the whitefly larvae were previously parasitized and contained a conspecific or a heterospecific parasitoid egg or larva. The host type (host stage and/or previous parasitization) did not influence the foraging behavior of either parasitoid species. The residence time on these tomato leaflets was about 0.9 h for A. fuscipennis and 1.9 h for E. formosa. Amitus fuscipennis hardly stood still and fed little, while E. formosa showed extensive standing still and feeding. As a result, the time walking while drumming was similar for both parasitoid species. The numbers of host encounters and ovipositions per leaflet were similar for both parasitoid species. However, the residence time of A. fuscipennis was half as long as that of E. formosa so the rate of encounters and ovipositions was higher for A. fuscipennis. Amitus fuscipennis is more efficient in finding and parasitizing hosts under these conditions. The walking activity and host acceptance of the synovigenic E. formosa diminished with the number of ovipositions, but not those of the proovigenic A. fuscipennis. Encarsia formosa is egg limited, while A. fuscipennis is time limited because of its short life span and high egg load. Both parasitoid species discriminated well between unparasitized larvae and self-parasitized larvae, but discriminated poorly those larvae parasitized by a conspecific and did not discriminate larvae parasitized by a heterospecific. Self-superparasitism, conspecific superparasitism, and multiparasitism were observed for both parasitoid species. Superparasitism always resulted in the emergence of one parasitoid and multiparasitism resulted in a higher emergence of one parasitoid of the species that had parasitized first. The data suggest that A. fuscipennis is a good candidate for use in biological control of high-density spots of T. vaporariorum when we consider its high encounter and oviposition rate.  相似文献   

12.
Laboratory experiments were conducted to examine the effect of ryegrass infection by the endophytic fungusAcremonium loliiLatch, Christensen and Samuels onMicroctonus hyperodaeLoan, a parasitoid ofListronotus bonariensis(Kuschel). Progression of parasitoids through the larval instar stages was shown to depend on adequate nutrition of the weevil host. Compared to confinement on endophyte-free ryegrass, parasitized weevils held on nonpreferred diets comprising leaf segments from endophyte-infected ryegrass and switchgrass contained parasitoid larvae with retarded development. Similarly, development of parasitoid larvae was retarded in hosts feeding on artificial diet containing diterpenes and alkaloids ofA. loliiorigin. Several diterpenes incorporated into the diet reduced survival of the parasitoid larvae. Attack rate of parasitoids was reduced when the quality of potential host weevils was compromised by confinement on nonpreferredA. lolii-infected ryegrass or without food for 14 days.  相似文献   

13.
Abstract Fitness and efficacy of Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae) as a biological control agent was compared on two species of whitefly (Hemiptera: Aleyrodidae) hosts, the relatively smaller sweetpotato whitefly, Bemisia tabaci (Gennadius) biotype ‘B’, and the larger greenhouse whitefly, Trialeurodes vaporariorum (Westwood). Significant differences were observed on green bean (Phaseolus vulgaris L.) in the laboratory at 27 ± 2°C, 55%± 5% RH, and a photoperiod of 14: 10 h (L: D). Adult parasitoids emerging from T. vaporariorum were larger than those emerging from B. tabaci, and almost all biological parameters of E. sophia parasitizing the larger host species were superior except for the developmental times of the parasitoids that were similar when parasitizing the two host species. Furthermore, parasitoids emerging from T. vaporariorum parasitized more of these hosts than did parasitoids emerging from B. tabaci. We conclude that E. sophia reared from larger hosts had better fitness than from smaller hosts. Those from either host also preferred the larger host for oviposition but were just as effective on smaller hosts. Therefore, larger hosts tended to produce better parasitoids than smaller hosts.  相似文献   

14.
In autoparasitoids, females are generally primary endoparasitoids of Hemiptera, while males are hyperparasitoids developing in or on conspecific females or other primary parasitoids. Female‐host acceptance can be influenced by extrinsic and/or intrinsic factors. In this paper, we are concerned with intrinsic factors such as nutritional status, mating status, etc. We observed the behavior of Encarsia pergandiella Howard (Hymenoptera: Aphelinidae) females when parasitizing primary (3rd instar larvae of Bemisia tabaci Gennadius [Homoptera: Aleyrodidae]) and secondary hosts (3rd instar larvae and pupae of Eretmocerus mundus Mercet [Hymenoptera: Aphelinidae]) for a period of 1 h. Females had different reproductive (virgin or mated younger) and physiological (fed elder or mated elder) status. Virgin females killed a large number of secondary hosts while investing a long time per host. However, they did not feed upon them. Mated females killed a lower number of secondary hosts and host feeding was observed in both consuming primary and secondary hosts. It was common to observe host examining females of all physiological statues tested repeatedly stinging the same hosts when parasitizing, killing or rejecting them. Fed elder females parasitized more B. tabaci larvae than E. mundus larvae or pupae, while investing less time on the primary host than on the secondary host. They also parasitized more B. tabaci larvae than mated elder females, while investing less time per host. The access of females to honey allowed them to lay more eggs.  相似文献   

15.
The effects of the host plant on the level of parasitism, development time and mortality ofEncarsia formosa Gahan parasitizing castor whitefly,Trialeurodes ricini Misra were studied. The level of parasitism varied significantly between host plants; ranging from an average high of 13/50T. ricini larvae parasitized per parasitoid per day on aubergine to an average low of 1.6/50 host larvae on potato. Development time ofE. formosa varied according to whitefly host plant; minimum average development time was 17.7 days on cotton. The mortality ofE. formosa was high on all host plants tested, and the type of host plant had no significant influence on mortality. Aubergine proved to be the most satisfactory laboratory plant for rearingE. formosa onT. ricini.  相似文献   

16.
The host suitability of Agrotis segetum Denis & Schiff., A. ipsilon Hufn., Spodoptera littoralis Boisd, S. exigua Hub., Mythimna loreyi Duponchel and Mamestra oleracea L. for the gregarious braconid Cotesia ( = Apanteles) telengai Tobias was determined under laboratory conditions. The parasitoid only completed its development in larvae of A. segetum. The percentage of successfully parasitized larvae and the mean duration of C. telengai egg‐larval period were inversely related to the age of the host or host instar at parasitization. The mean number of parasitoids which emerged per parasitized larva was positively correlated with the larval age. The sex ratio was consistently high (ca. eight males to one female), independent of the host instar parasitized, as compared to 1:1 as observed frequently in field populations of this wasp. The females of C. telengai were active and produced offspring at temperatures of 15, 20, 25 and 30° C. However, the mean percentage of parasitized larvae increased from 13.1 to 72% and the mean progeny per parasitoid female increased from 14.7 to 129.4 parasitoids, both significant, when the experimental temperature was raised from 15 to 30°C, while their mean development time decreased from 75.5 to 19.2 days. At 25°C, the virgin and mated females continued oviposition until days 16 and 17, with a lifetime total of progeny of 397.6 (SD ±224.7) and 611.1 (SD± 128.8) parasitoids respectively, reaching a maximum of 64.3 and 99.2 on day 2 respectively.  相似文献   

17.
Analysis of the searching behaviour ofEncarsia formosa showed that this parasite was not able to locate its individual hosts (Trialeurodes vaporariorum) from a certain distance. In addition, quantitative data on sizes and numbers of hosts of each stage present on the leaf parts under observation, and the number of contacts the wasp made with these showed that the host-searching behaviour ofE. formosa on a leaf is random. Since, moreover, the distribution of the hosts over the leaf is random too, the number of hosts parasitized per unit of time is entirely dependent on the walking speed of the parasite and the number and sizes of the hosts present.  相似文献   

18.
We conducted inundative release experiments withTrichogramma nubilale (Hymenoptera: Trichogrammatidae) to suppressOstrinia nubilalis (Lepidoptera: Pyralidae) in sweet corn (Zea mays): two experiment duringO. nubilalis first generation and three experiments during second generation. Five measurements of ear and stalk damage were used to assess.O. nubilalis control in treated and untreated plots within each experimental field. In one experiment during second generation, naturalO. nubilalis populations were sufficiently high to demonstrate that the parasitoids (three releases totaling 4.4 million parasitoids per ha) parasitized an estimated 57.4% of the placedO. nubilalis egg masses and reduced the mean number ofO. nubilalis larvae per ear by 97.4% the number of tunnels per stalk by 92.9%, and the number of larvae per stalk by 94.3% in the release plot. Ear damage in this experiment was suppressed to meet acceptable standards for use in cut-corn commercial processing. Larval mortality was apparently density independent, which implies that density-dependent larval loss would not compensate for egg parasitism byT. nubilale.  相似文献   

19.
Encarsia bimaculata was recently described from India as a potentially useful parasitoid of Bemisia tabaci. Its developmental biology was studied in the laboratory at 25–30 °C and 70–75% RH. Results showed that E. bimaculata is a solitary, arrhenotokous, heteronomous, autoparasitoid. Mated females laid eggs internally in B. tabaci nymphs that developed as primary parasitoids. Males developed as hyperparasitoids, either in females of their own species or in other primary aphelinid parasitoids. Superparasitism was common under cage conditions. Both sexes have an egg, three larval instars, prepupal, and pupal stages. Development from egg to adult took 12.70 ± 2.10 days for females and 14.48 ± 2.60 days for males. Individual B. tabaci nymphs were examined for E. bimaculata parasitization using three isozymes: esterase, malate dehydrogenase, and xanthine dehydrogenase. All three isozymes showed differential banding patterns that identified E. bimaculata parasitized or unparasitized B. tabaci nymphs.  相似文献   

20.
Fopius arisanus (Sonan) and Diachasmimorpha tryoni (Cameron) are two important solitary endoparasitoids of tephritid fruit flies. The former species attacks host eggs while the latter attacks host larvae, and both species emerge as adults from the host puparium. This study investigated intrinsic competition between these two parasitoids, as well as aspects of intraspecific competition within each species in the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Parasitization by F. arisanus resulted in direct mortality of host eggs and prolonged development of host eggs and larvae. Superparasitism by F. arisanus was uncommon when mean parasitism per host patch was <50%, but increased with rising rates of parasitism. Superparasitism by D. tryoni was more common. In superparasitized hosts, supernumerary individuals of F. arisanus were killed through physiological suppression, while supernumerary larvae of D. tryoni were killed mainly through physical attack. In multiparasitized hosts, dissections showed that 81.6% of D. tryoni eggs in the presence of F. arisanus larvae died within 3 days, indicating physiological inhibition of egg hatch. Rearing results further showed that F. arisanus won almost all competitions against D. tryoni. The ratio of D. tryoni stings to ovipositions was lower in hosts not previously parasitized by F. arisanus than in parasitized hosts, suggesting that D. tryoni can discriminate against parasitized hosts. The mechanism that F. arisanus employs to eliminate D. tryoni is similar to that it uses against all other larval fruit fly parasitoids so far reported. The results are discussed in relation to the competitive superiority of early acting species in fruit fly parasitoids, and to a possible competitive-mediated mechanism underlying host shift by D. tryoni to attack non-target flies following the successful introduction of F. arisanus in Hawaii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号