首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At maximally active concentrations with 20-min exposure, insulin and phorbol myristate acetate (PMA) stimulated hexose transport in 3T3-L1 adipocytes by 11- and 2-fold, respectively. The potential role of phosphorylation of the glucose transporter (GT) in these stimulations was investigated by the isolation of GT through immunoprecipitation from ortho[32P]phosphate-labeled 3T3-L1 adipocytes. It was found that there was no significant 32P incorporation into GT from basal adipocytes after 2- or 18 h-labeling in the presence of 0.5 mCi of 32Pi/ml. Furthermore, under these labeling conditions, insulin treatment for 1, 4, or 30 min failed to stimulate the phosphorylation of GT. Also, there was no detectable phosphate incorporation into GT upon reversal of insulin-stimulated hexose transport by the removal of insulin (half-time for reversal approximately 8 min). In contrast to these results, exposure of adipocytes to PMA (1 microM) for 20 min elicited a phosphorylation of GT to the extent of about 0.1 phosphate/GT molecule. Exposure of cells to both insulin and PMA resulted in a 3-fold increase in the level of phosphate in GT compared to that seen with PMA alone. Possibly this increase is due to the translocation of GT to the plasma membrane where it is a better substrate for activated protein kinase C. Stimulation of hexose transport was the same with the combined treatment of insulin and PMA compared to that seen with insulin alone. These results indicate that neither a change in the phosphorylation state of the GT nor activation of protein kinase C is involved in the mechanism by which the insulin receptor stimulates glucose transport.  相似文献   

2.
We have used aequorin as an indicator for the intracellular free calcium ion concentration [( Ca++]i) of Swiss 3T3 fibroblasts. Estimated [Ca++]i of serum-deprived, subconfluent fibroblasts was 89 (+/-20) nM, almost twofold higher than that of subconfluent cells growing in serum, whose [Ca++]i was 50 (+/-19) nM. Serum, partially purified platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF) stimulated DNA synthesis by the serum-deprived cells, whereas epidermal growth factor (EGF) did not. Serum immediately and transiently elevated the [Ca++]i of serum-deprived cells, which reached a maximal value of 5.3 microM at 18 s poststimulation but returned to near prestimulatory levels within 3 min. Moreover, no further changes in [Ca++]i were observed during 12 subsequent h of continuous recording. PDGF produced a peak rise in [Ca++]i to approximately 1.4 microM at 115 s after stimulation, and FGF to approximately 1.2 microM at 135 s after stimulation. EGF caused no change in [Ca++]i. The primary source of calcium for these transients was intracellular, since the magnitude of the serum-induced rise in [Ca++]i was reduced by only 30% in the absence of exogenous calcium. Phorbol 12-myristate 13-acetate (PMA) had no effect on resting [Ca++]i. When, however, quiescent cells were treated for 30 min with 100 nM PMA, serum-induced rises in [Ca++]i were reduced by sevenfold. PMA did not inhibit growth factor-induced DNA synthesis and was by itself partially mitogenic. We suggest that if calcium is involved as a cytoplasmic signal for mitogenic activation of quiescent fibroblasts, its action is early, transient, and can be partially substituted for by PMA. Activated protein kinase C may regulate growth factor-induced increases in [Ca++]i.  相似文献   

3.
PDGF stimulates transient phosphorylation of 180,000 dalton protein   总被引:1,自引:0,他引:1  
Cell-free extracts of platelet-derived growth factor (PDGF) treated, density-arrested, quiescent BALB/c-3T3 cells are capable of phosphorylating a 180,000 dalton protein (PP180). The phosphorylation of PP180 was observed in SDS polyacrylamide gel electrophoresis profiles of Nonidet P-40 solubilized cell preparations that had been incubated with [gamma-32P]ATP. When quiescent BALB/c-3T3 cell cultures were incubated at 37 degrees C with PDGF, phosphorylation of PP180 in cell extracts could be detected after a 3-min exposure of the intact cells to PDGF, which was maximal after 10-15 minutes and had diminished by 30-60 min. PDGF stimulation of PP180 phosphorylation also was observed in extracts of cells that had been incubated with PDGF at 4 degrees C; however, in contrast to PDGF exposure at 37 degrees C, the ability of cell extracts to phosphorylate PP180 did not decrease even after 4 hr of cell exposure to PDGF at 4 degrees C. When cells exposed to PDGF at 4 degrees C were transferred to 37 degrees C for 30 min, the ability of cell extracts to phosphorylate PP180 decreased to a nonstimulated level. After cells stimulated by PDGF showed a diminished ability to phosphorylate PP180, immediate restimulation with PDGF did not induce the ability to phosphorylate PP180. Incubation for 11 hr at 37 degrees C was required before readdition of PDGF allowed observable phosphorylation of PP180 in cell extracts, but maximum PDGF stimulation of the phosphorylation of PP180 was found after the cells were incubated for 24 hr in culture conditions. The amount of the stimulation of PP180 phosphorylation was dependent on the concentration of PDGF. The stimulation of DNA synthesis by PDGF was correlated to the phosphorylation of PP180. This phosphorylation activity was not observed in extracts of cells that had been treated with epidermal growth factor (EGF), somatomedin C, insulin, plasma, or fibroblast growth factor (FGF). This novel experimental approach allows the investigation of a PDGF-stimulated phosphorylation activity in relation to the cell cycle and growth regulation.  相似文献   

4.
Grb2-associated binder-1 (Gab1) is an adapter protein related to the insulin receptor substrate family. It is a substrate for the insulin receptor as well as the epidermal growth factor (EGF) receptor and other receptor-tyrosine kinases. To investigate the role of Gab1 in signaling pathways downstream of growth factor receptors, we stimulated rat aortic vascular smooth muscle cells (VSMC) with EGF and platelet-derived growth factor (PDGF). Gab1 was tyrosine-phosphorylated by EGF and PDGF within 1 min. AG1478 (an EGF receptor kinase-specific inhibitor) failed to block PDGF-induced Gab1 tyrosine phosphorylation, suggesting that transactivated EGF receptor is not responsible for this signaling event. Because Gab1 associates with phospholipase Cgamma (PLCgamma), we studied the role of the PLCgamma pathway in Gab1 tyrosine phosphorylation. Gab1 tyrosine phosphorylation by PDGF was impaired in Chinese hamster ovary cells expressing mutant PDGFbeta receptor (Y977F/Y989F: lacking the binding site for PLCgamma). Pretreatment of VSMC with (a specific PLCgamma inhibitor) inhibited Gab1 tyrosine phosphorylation as well, indicating the importance of the PLCgamma pathway. Gab1 was tyrosine-phosphorylated by phorbol ester to the same extent as PDGF stimulation. Studies using antisense protein kinase C (PKC) oligonucleotides and specific inhibitors showed that PKCalpha and PKCepsilon are required for Gab1 tyrosine phosphorylation. Binding of Gab1 to the protein-tyrosine phosphatase SHP2 and phosphatidylinositol 3-kinase was significantly decreased by PLCgamma and/or PKC inhibition, suggesting the importance of the PLCgamma/PKC-dependent Gab1 tyrosine phosphorylation for the interaction with other signaling molecules. Because PDGF-mediated ERK activation is enhanced in Chinese hamster ovary cells that overexpress Gab1, Gab1 serves as an important link between PKC and ERK activation by PDGFbeta receptors in VSMC.  相似文献   

5.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

6.
The mitogen requirement and proliferative response of Swiss 3T3 cells in serum-free, chemically defined culture medium were compared with those of early-passage human diploid fibroblasts. The effects of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), insulin, transferrin, and dexamethasone on cell-cycle parameters were measured using 5'-bromo-deoxyuridine-Hoechst flow cytometry. Swiss 3T3 cells differ from human fibroblasts in several ways: (1) Swiss 3T3 cells showed a much higher dependence on PDGF than human fibroblasts; the growth of the latter, but not of the former, could be stimulated by the combination of EGF, insulin, and dexamethasone to the full extent of that when PDGF was present; (2) in the absence of PDGF, insulin was an absolute requirement for Swiss 3T3 cells to initiate DNA synthesis, while a substantial proportion of human fibroblasts could enter DNA synthesis without exogenous insulin or IGF-I; and (3) in the absence of PDGF, increasing insulin concentration increased the cycling fraction of Swiss 3T3 cells without an appreciable effect on the rate of cell exit from G0/G1, while under similar culture conditions, insulin showed its major effect on regulation of the G1 exit rate of human fibroblasts, without much effect on the cycling fraction. In addition, the proliferative response of high-density versus low-density, arrested Swiss 3T3 cells showed that the interaction of mitogens varied with cell density. At high cell density, the PDGF requirement was consistent with the "competence/progression" cell-cycle model. This growth response was not seen, however, when cells were plated at low density.  相似文献   

7.
Exposure of serum-deprived 3T3-L1 fibroblasts to phorbol 12-myristate 13-acetate (PMA), synthetic diacylglycerols, platelet-derived growth factor (PDGF), or pituitary fibroblast growth factor (FGF) resulted in stimulated phosphorylation of an acidic, multicomponent, soluble protein of Mr 80,000. Phosphorylation of this protein was promoted to a lesser extent by epidermal growth factor; however, neither insulin nor dibutyryl cAMP was effective. Phosphoamino acid analysis and peptide mapping of the Mr 80,000 32P-protein after exposure of fibroblasts to PDGF revealed identical patterns to those obtained with PMA or diacylglycerols. In contrast to the Mr 80,000 protein, proteins of Mr 22,000 (and pI 4.4) and Mr 31,000 were also phosphorylated in response to insulin as well as to PMA, diacylglycerols, epidermal growth factor, PDGF, and FGF in these cells. Similar findings were noted in fully differentiated 3T3-L1 adipocytes. Preincubation of the cells with high concentrations of active phorbol esters abolished specific [3H]phorbol 12,13-dibutyrate binding, protein kinase C activity, and immunoreactivity and also prevented stimulated phosphorylation of the Mr 80,000 protein by PMA, diacylglycerols, PDGF, or FGF, supporting the contention that this effect was mediated through protein kinase C. The stimulated phosphorylation of the Mr 22,000 and 31,000 proteins in response to PMA was also abolished by such pretreatment. In contrast, the ability of insulin, PDGF, and FGF to promote phosphorylation of the Mr 22,000 and 31,000 proteins was unaffected in the protein kinase C-deficient cells. We conclude that PDGF and FGF may exert some of their effects on these cells through at least two distinct pathways of protein phosphorylation, phorbol ester-like (P) activation of protein kinase C, and an insulin-like (I) pathway exemplified by phosphorylation of the Mr 22,000 and 31,000 proteins.  相似文献   

8.
The signal transduction pathway by which insulin stimulates glucose transport is largely unknown, but a role for tyrosine and serine/threonine kinases has been proposed. Since mitogen-activated protein (MAP) kinase is activated by insulin through phosphorylation on both tyrosine and threonine residues, we investigated whether MAP kinase and its upstream regulator, p21ras, are involved in insulin-mediated glucose transport. We did this by examining the time- and dose-dependent stimulation of glucose uptake in relation to the activation of Ras-GTP formation and MAP kinase by thrombin, epidermal growth factor (EGF), and insulin in 3T3-L1 adipocytes. Ras-GTP formation was stimulated transiently by all three agonists, with a peak at 5 to 10 min. Thrombin induced a second peak at approximately 30 min. The activation of p21ras was paralleled by both the phosphorylation and the activation of MAP kinase: transient for insulin and EGF and biphasic for thrombin. However, despite the strong activation of Ras-GTP formation and MAP kinase by EGF and thrombin, glucose uptake was not stimulated by these agonists, in contrast to the eightfold stimulation of 2-deoxy-D-[14C]glucose uptake by insulin. In addition, insulin-mediated glucose transport was not potentiated by thrombin or EGF. Although these results cannot exclude the possibility that p21ras and/or MAP kinase is needed in conjunction with other signaling molecules that are activated by insulin and not by thrombin or EGF, they show that the Ras/MAP kinase signaling pathway alone is not sufficient to induce insulin-mediated glucose transport.  相似文献   

9.
Addition of tumor promoting phorbol esters, such as phorbol 12-myristate 13-acetate (PMA), to many cell lines results in a decrease of 125I-epidermal growth factor (EGF) binding and increased serine/threonine phosphorylation of the EGF receptor in a process termed transmodulation. It is, however, unclear whether or not receptor phosphorylation is causally related to the inhibition of high affinity EGF binding. We have investigated the significance of phosphorylation/dephosphorylation events in the mechanism of PMA-induced transmodulation using the adenylate cyclase activator cholera toxin and the serine/threonine protein phosphatase inhibitor okadaic acid. In Rat-1 fibroblasts treated at 37 degrees C, PMA induced a rapid decrease in EGF binding which persisted for 3 hours. In contrast, cells exposed to PMA in the presence of cholera toxin exhibited a marked recovery of binding within 60 minutes. The PMA-stimulated decrease in binding correlated with a rapid increase in the phosphorylation state of the EGF receptor. While phosphorylation of the receptor was sustained at an elevated level for at least three hours in cells receiving PMA alone, EGF receptor phosphorylation decreased between 1 and 3 hours in cells treated with PMA and cholera toxin. Furthermore, the cholera toxin-stimulated return of EGF binding was inhibited by treatment with the phosphatase inhibitor okadaic acid. These results suggest that a cholera toxin-activated phosphatase can increase binding capacity of the transmodulated EGF receptor in Rat-1 cells. Cholera toxin treatment elicited a qualitatively similar response in cells transmodulated by platelet-derived growth factor (PDGF). Okadaic acid antagonized the natural return of binding observed in cells stimulated with PDGF alone, indicating that a dephosphorylation event may be required for the recovery of normal EGF binding after receptor transmodulation.  相似文献   

10.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   

11.
The mitotic effects of epidermal growth factor (EGF) were investigated in two cultured fibroblast lines, BALB/c-3T3 and C3H 10T1/2 cells. EGF (30 ng/ml) added to quiescent 3T3 cells in medium containing either platelet-poor plasma or 10(-5) M insulin caused only minimal increases in the percentage of cells stimulated to initiate DNA synthesis. In contrast, EGF acted synergistically with either insulin or plasma to stimulate DNA synthesis in quiescent cultures of 10T1/2 cells, although the maximum effects of EGF were measured at concentrations several-fold greater than those found in either serum or plasma. In either 3T3 or 10T1/2 cells a transient preexposure to platelet-derived growth factor (PDGF) caused over a 10-fold increase in the sensitivity to the mitogenic effects of EGF. It is therefore possible that a primary action of PDGF is to increase the sensitivity of fibroblasts to EGF, independent of whether EGF alone is found to be mitogenic.  相似文献   

12.
J Meisenhelder  P G Suh  S G Rhee  T Hunter 《Cell》1989,57(7):1109-1122
Phospholipase C-gamma (PLC-gamma) was rapidly phosphorylated on tyrosines and serines following PDGF and EGF treatment of quiescent 3T3 mouse fibroblasts and A431 human epidermoid cells, respectively, PDGF treatment increased PLC-gamma phosphorylation within 30 sec. This lasted for up to 1 hr, and occurred at high stoichiometry. Continuous receptor occupancy was required to maintain this phosphorylation. Three major sites of tyrosine phosphorylation were detected in PLC-gamma, two of which were phosphorylated in EGF-treated A431 cells. Under certain conditions PDGF receptor coimmunoprecipitated with PLC-gamma, suggesting that PDGF receptor can phosphorylate PLC-gamma directly. Indeed, purified PDGF or EGF receptor phosphorylated purified PLC-gamma on tyrosines identical to those phosphorylated in vivo. Tyrosine phosphorylation of PLC-gamma was not induced by bombesin, TPA, or insulin. Stimulation of PLC-gamma tyrosine phosphorylation and the reported ability of PDGF and EGF to induce phosphatidylinositol turnover in different cells were strongly correlated. We propose that tyrosine phosphorylation of PLC-gamma by PDGF and EGF receptors leads to its activation, and a consequent increase in phosphatidylinositol turnover.  相似文献   

13.
We showed that the intracellular tyrosine kinases src and pyk2 mediate angiotensin II (Ang II) stimulation of growth and ERK1/2 mitogen-activated protein (MAP) kinase phosphorylation in astrocytes. In this study, we investigated whether the membrane-bound receptor tyrosine kinases platelet-derived growth factor (PDGF) and epidermal growth factor (EGF) receptors mediate Ang II stimulation of ERK1/2 and astrocyte growth. Ang II significantly stimulated PDGF and EGF receptors in a dose- and time-dependent manner. The PDGF receptor and the EGF receptor were maximally stimulated with 100 nM Ang II (0.98+/-0.18- and 4.4+/-1.4-fold above basal, respectively). This stimulation occurred as early as 5 min, and was sustained for at least 15 min for both receptor tyrosine kinases. Moreover, 1 microM AG1478 and 0.25 microM PDGFRInhib attenuated Ang II stimulation of the EGF and PDGF receptors, respectively. Ang II-induced phosphorylation of ERK1/2 and astrocyte growth was mediated by both PDGF and EGF receptors. This report also provides novel findings that co-inhibiting EGF and PDGF receptors had a greater effect to decrease Ang II-induced ERK1/2 (90% versus 49% and 71% with PDGF receptor and EGF receptor inhibition, respectively), and astrocyte growth (60% versus 10% and 32% with PDGF receptor and EGF receptor inhibition, respectively). In conclusion we showed in astrocytes that the PDGF and the EGF receptors mediate Ang II-induced ERK1/2 phosphorylation and astrocyte growth and that these two receptors may exhibit synergism to regulate effects of the peptide in these cells.  相似文献   

14.
In primary cultures of rat hepatocytes, epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and foetal-calf serum (FCS) prevented the stimulation of amino acid transport by glucagon (cyclic AMP-dependent) and by catecholamines (cyclic AMP-independent), but not by insulin. The insulin effect, as well as the effect of other hormones, were totally inhibited by thrombin through a mechanism independent of its proteolytic activity. The inhibitory effect of growth factors, not found in freshly isolated hepatocytes, was expressed very early in culture (4h). Induction of tyrosine aminotransferase by glucagon or dexamethasone, which, like stimulation of transport, represents a late hormonal effect, was not affected by EGF, PDGF or FCS, but was inhibited by thrombin. In contrast, none of the rapid changes in protein phosphorylation caused by hormones was altered by growth factors. Thus the inhibition by growth factors of hormonal stimulation of transport presumably involves late step(s) in the cascade of events implicated in this hormonal effect.  相似文献   

15.
Heparin and heparan are potent inhibitors of vascular smooth muscle cell (VSMC) proliferation. To investigate the mechanisms by which heparin suppresses growth factor stimulated mitogenesis, the present experiments investigated the effects of heparin on platelet-derived growth factor (PDGF) stimulated signal transduction pathways. Heparin treatment substantially inhibited PDGF-BB stimulated rat VSMC growth. Western analysis showed a 30 min PDGF-BB treatment of VSMC induced the tyrosine phosphorylation of multiple protein bands; cotreatment with heparin inhibited mitogen-activated protein (MAP) kinase tyrosine phosphorylation but had little effect on PDGF receptor tyrosine phosphorylation. In-gel kinase assays demonstrated that heparin inhibited PDGF-BB stimulated MAP kinase activity at late (25 min) but not early (10 min) time points. These data indicate that heparin does not inhibit the initial signalling events after PDGF-BB binding but instead acts through an alternate mechanism to inhibit MAP kinase. To investigate if heparin directly stimulates tyrosine phosphatase-mediated suppression of MAP kinase, we treated VSMC with orthovanadate, a tyrosine phosphatase inhibitor. Heparin inhibited MAP kinase tyrosine phosphorylation after orthovanadate treatment, indicating that heparin does not suppress MAP kinase by enlistment of a tyrosine phosphatase. Experiments were performed to investigate signalling pathways upstream of MAP kinase. To determine if protein kinase C (PKC) mediates PDGF-BB, serum, and EGF stimulation of MAP kinase, we treated VSMC overnight with phorbol ester (PMA) to downregulate PKC. Abolition of conventional and novel PKC activity significantly suppressed both serum and PDGF-BB induced MAP kinase activation, indicating protein kinase C is an important mediator for these mitogens. In contrast, downregulation of these PKC isoforms had little effect on EGF stimulation of MAP kinase. As heparin inhibits PDGF and serum but not EGF stimulation of MAP kinase, these data precisely correlate heparin inhibition of MAP kinase with activation through PKC-dependent pathways. Immunoprecipitation analysis found that heparin inhibited serum, PMA, and PDGF but not EGF induced raf-1 phosphorylation. These studies demonstrate that heparin did not block PDGF-BB receptor activation, which initiates the mitogenic signalling cascade. Heparin did inhibit specific postreceptor second messenger signals, such as the late phase activation of MAP kinase, which may be mediated by suppression of PKC-dependent pathways. J. Cell. Physiol. 172:69–78, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Epidermal growth factor (EGF), a mitogen for renal proximal tubule cells, activated the hexose monophosphate (HMP) shunt in renal proximal tubule cells (Stanton, R. C., and Seifter, J. L. (1988) Am. J. Physiol. 254, C267-C271). We therefore evaluated the effect of EGF on the HMP shunt enzymes glucose 6-phosphate dehydrogenase (G6PD, the rate-limiting enzyme) and 6-phosphogluconate dehydrogenase. Rat renal cortical cells (RCC) were incubated with either EGF or platelet-derived growth factor (PDGF) and then assayed for G6PD and 6-phosphogluconate dehydrogenase activities. EGF and PDGF increased G6PD activity by 25 and 27% respectively. Although phorbol myristate acetate (PMA), ionomycin, PMA + ionomycin, and 8-bromo-cyclic AMP had no significant effect on the activity, a 5-min preincubation with PMA potentiated the activation of G6PD by PDGF. Growth factor activation of G6PD was also seen in a fibroblast and epithelial cell line. None of the agents affected 6-phosphogluconate dehydrogenase activity in the RCC or in the cell lines. Further exploration into a possible mechanism for G6PD activation revealed that growth factors caused release of G6PD from a structural element within the cell. Streptolysin O permeabilization of RCC did not cause significant release of G6PD. However, within 1 min of addition of EGF or PDGF to permeabilized cells, G6PD was released into the cell supernatant. The nonhydrolyzable analog of GTP, guanosine 5'-O-(thiotriphosphate), caused a similar release of G6PD. Preincubation with pertussis toxin or guanyl-5'-yl thiophosphate inhibited the PDGF but not the EGF effect. Although the data do not establish a definitive proof linking G6PD release and G6PD activation, these results suggest that they are related. Thus, growth factor stimulation of the HMP shunt likely occurs by a novel mechanism associated with release of bound G6PD.  相似文献   

17.
We have tested the hypothesis that the mechanism of platelet-derived growth factor (PDGF) and phorbol diester action to decrease the apparent affinity of the epidermal growth factor (EGF) receptor is the phosphorylation of the EGF receptor at the Ca2+/phospholipid-dependent protein kinase (protein kinase C) phosphorylation site, threonine 654. Protein kinase C-deficient cells were prepared by prolonged incubation of human fibroblasts with phorbol diester. Addition of phorbol diesters to these cells fails to regulate EGF receptor affinity or threonine 654 phosphorylation. In contrast, PDGF treatment of both control and protein kinase C-deficient fibroblasts causes a decrease in the apparent affinity of the EGF receptor and an increase in threonine 654 phosphorylation. Thus, the ability of PDGF or phorbol diester to modulate EGF receptor affinity occurs only when threonine 654 phosphorylation is increased. The stoichiometry of threonine 654 phosphorylation associated with a 50% decrease in the binding of 125I-EGF to high affinity sites was 0.15 versus 0.3 mol of phosphate per mole of EGF receptor when 32P-labeled fibroblasts are treated with PDGF or phorbol diester, respectively. It is concluded that EGF receptor phosphorylation at threonine 654 can be regulated by PDGF independently of protein kinase C, substoichiometric phosphorylation of the total EGF receptor pool at threonine 654 is caused by maximally effective concentrations of PDGF, and different extents of phosphorylation of EGF receptors at threonine 654 are observed for maximally effective concentrations of PDGF and phorbol diester, respectively. The data are consistent with the hypothesis that a specific subpopulation of EGF receptors that exhibit high affinity for EGF are regulated by threonine 654 phosphorylation.  相似文献   

18.
We found that stimulation of density-inhibited chicken embryo fibroblasts with serum, epidermal growth factor (EGF), platelet-derived growth factor, (PDGF), or multiplication-stimulating activity (MSA) leads to an increase in tyrosine phosphorylation of proteins in the region of Mr 40,000 (40K) to 42K. The increase in tyrosine phosphorylation after serum or EGF stimulation was transient, reaching a maximum at about 5 min and then declining. By fine-resolution analysis of proteins separated on sodium dodecyl sulfate-polyacrylamide gels, we found that after EGF stimulation, the major increase in phosphotyrosine content was in a 42K Mr protein, with a smaller increase in a 40K Mr protein. The increased phosphorylation in the 40K to 42K Mr region accounted for almost all of the increase in phosphotyrosine observed in these cells. These phosphotyrosine-containing proteins were different from the major phosphotyrosine-containing protein of Rous sarcoma virus-transformed chicken embryo fibroblasts, which migrates at an approximate Mr of 36K. Increased tyrosine phosphorylation of proteins of similar Mr was found in 3T3 cells treated with EGF, but not in NR-6 cells, which lack detectable EGF receptors. It is possible that the 40K to 42K Mr phosphotyrosine-containing proteins are involved in the integration of the biological response to a number of different growth factors.  相似文献   

19.
Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts we demonstrate that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA. Feed-back inhibition of surface receptors by protein kinase C-mediated phosphorylation is therefore not general, and cannot be the only process responsible for the attenuation of receptor-mediated responses in eukaryotic cells.  相似文献   

20.
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号