首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugarcane-pressmud, a by-product of cane-sugar manufacture, was used as a substrate for production of citric acid by Aspergillus niger CFTRI 30, in a solid-state fermentation system. Of the 170 g of sugar supplied, 131 g were consumed, with a 79% yield of citric acid over 120 h. Potassium ferrocyanide improved the conversion to about 88% and lowered the fermentation time by 24 h. Enrichment with sugar and NH4NO3 was essential to improve productivity. About 174 g citric acid/kg dry sugarcane-pressmud were produced after 120 h in ferrocyanid-treated medium which initially contained 12.5% (w/w) effective sugar and 0.1% (w/w) NH4NO3. About 3% (w/w) of the original sugar present in the sugarcane-pressmud was non-utilizable. This is the first report on the potential of sugarcane-pressmud for citric acid production.V.S. Shankaranand and B.K. Lonsane are with the Fermentation Technology and Bioengineering Discipline, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

2.
Three Aspergillus nigerstrains were grown in submerged and solid state fermentation systems with sucrose at 100 g l–1. Average measurements of all strains, liquid vs solid were: final biomass (g l–1), 11 ± 0.3 vs 34 ± 5; maximal enzyme titres (U l–1) 1180 ± 138 vs 3663 ± 732; enzyme productivity (U l–1h–1) 20 ± 2 vs 87 ± 33 and enzyme yields (U/gX) 128 ± 24 vs 138 ± 72. Hence, better productivity in solid-state was due to a better mould growth.  相似文献   

3.
Growth of Aspergillus niger and glucoamylase production correlated well with the water activity of the substrate (wheat bran plus corn flour) in a solid-state fermentation. Both were maximal at an initial water activity of 0.936. Glycoamylase reached 550 units/g dry substrate after 96 h.The authors are with the Biotechnology Unit, Regional Research Laboratory, CSIR, Trivandrum-695 019, India  相似文献   

4.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

5.
The type of sporulation medium and time of incubation had an effect on spore viability and citric acid production by mycelia grown from Aspergillus niger spores. Shu & Johnson agar (SJA) and potato dextrose agar gave higher citric acid titres than malt-extract agar. SJA also gave better germinability than the other media. Viability increased with time of incubation, but higher production of citric acid was achieved with spores incubated for less than 7 days.  相似文献   

6.
Aspergillus foetidus ACM 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4g of citric acid per 100g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30°C, an unadjusted initial pH of 3.4, a particle size of 2mm and 5ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.  相似文献   

7.
Aims:  To investigate the ability of the citric acid-producing strain Aspergillus niger ATCC 9142 to utilize the ethanol fermentation co-product corn distillers dried grains with solubles for citric acid production following various treatments.
Methods and Results:  The ability of A. niger ATCC 9142 to produce citric acid and biomass on the grains was examined using an enzyme assay and a gravimetric method, respectively. Fungal citric acid production after 240 h was higher on untreated grains than on autoclaved grains or acid-hydrolysed grains. Fungal biomass production was enhanced after autoclaving and acid-hydrolysis of the grains. Phosphate supplementation to the grains slightly stimulated citric acid production while methanol addition decreased its synthesis. Using the phosphate-supplemented grains, the optimal incubation temperature, initial moisture content of the grains and the length of fermentation time for ATCC 9142 citric acid production were determined to be 25°C, 82% and 240 h, respectively.
Conclusions:  A. niger ATCC 9142 synthesized citric acid on corn distillers dried grains with solubles. The phosphate-treated grains increased citric acid production by the strain.
Significance and Impact of the Study:  The ethanol fermentation co-product corn distillers dried grains with solubles could be useful commercially as a substrate for A. niger citric acid production.  相似文献   

8.
Aspergillus niger was immobilized in cryogels and in conventional gels of polyacrylamide. The growth of cells entrapped in two kinds of gels and the production of citric acid by the immobilized cells were investigated and compared. Cells immobilized in cryogels were more suitable for citric acid production.  相似文献   

9.
Aspergillus niger Yang No. 2 and its mutant strain SL1 were grown in solid state fermentation. Samples were taken after 2, 4 and 6 days of incubation and the mycelia were analysed for their intracellular concentrations of some organic acids and adenylates and the activities of selected enzymes. Strain Yang No. 2 contained high concentrations of citrate with very little oxalate, while strain SL1 contained lower concentrations of citrate but considerably higher concentrations of oxalate. As the fermentation proceeded, strain Yang No. 2 showed a much higher ratio of ATP:AMP than did strain SL1. In addition, the enzyme ATP:citrate lyase became undetectable during citrate accumulation in strain Yang No. 2, while its activity remained high during oxalate accumulation in strain SL1. It is proposed that citrate accumulation by strain Yang No. 2 during solid state fermentation is due to blockage of its metabolism in the mitochondrion via inhibition of isocitrate dehydrogenase by the high ATP:AMP ratio, and in the cytosol by repression of ATP:citrate lyase activity.  相似文献   

10.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

11.
Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.  相似文献   

12.
Spore suspensions of Aspergillus niger GCB 75, which produced 31.1 g/l citric acid from 15% sugars in molasses, were subjected to u.v.-induced mutagenesis. Among three variants, GCM 45 was found to be the best citric acid producer and was further improved by chemical mutagenesis using NTG. Out of 3 deoxy-D-glucose-resistant variants, GCM 7 was selected as the best mutant which produced 86.1 ± 1.5 g/l citric acid after 168 h of fermentation of potassium ferricyanide + H2SO4-pretreated black strap molasses (containing 150 g sugars/l) in Vogel's medium. On the basis of comparison of kinetic parameters, namely the volumetric substrate uptake rate (Q s), and specific substrate uptake rate (q s), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and had the ability to overproduce citric acid.  相似文献   

13.
Morphology and cell wall composition of Aspergillus niger were studied under conditions of manganese sufficient or deficient cultivation in an otherwise citric acid producing medium. Omission of Mn2+ (less than 10-7 M) from the nutrient medium of Aspergillus niger results in abnormal morphological development which is characterized by increased spore swelling, and squat, bulbeous hyphae. Fractionation and analysis of manganese deficient cell walls revealed increased chitin and reduced -glucan contents as well as reduction of galactose containing polymers, as compared to cell walls from manganese sufficient grown hyphae. Addition of copper induced the same effect as manganese deficiency, both on morphology and cell wall composition. Addition of cycloheximide also produced a very similar type of morphology with increased chitin and reduced -glucan contents of the cell wall but its effect on galactose was less pronounced.Dedicated to emer. Prof. Dr. J. Kisser on the occasion of his 80th birthday  相似文献   

14.
A study was performed to understand the physiology and biochemical mechanism of citric acid accumulation during solid state fermentation of sweet potato using Aspergillus niger Yang No.2. A low citrate-producing mutant was isolated followed by a comparative study of the fermentation process and selected physiological and biochemical parameters. In contrast with the parent strain, the mutant strain displayed lower concentrations, yields and production rates of citric acid, accompanied by higher concentrations, yields and production rates of oxalic acid. In addition, the mutant utilized starch at a lower rate although higher concentrations of free glucose accumulated in the cultures. Biochemical analyses revealed lower rates of glucose uptake and hexokinase activity of the mutant strain in comparison with the parent strain. It is proposed that, in common with submerged fermentation, over-production of citric acid in solid state fermentation is related to an increased glucose flux through glycolysis. At low glucose fluxes, oxalic acid is accumulated.  相似文献   

15.
Potato starch and both untreated and decationized dextrose syrups were used as substrates for submerged citric acid biosynthesis using a mutant of Aspergillus niger. The same yield of product (80%) was achieved with both syrups and the starch despite having different trace metals content. The obtained mutant was more sensitive than the parent to Cd2+, Mo2+, and As3+, with decreasing yields of citric acid at 10 mg of ions l–1. Fe2+, Mn2+, V2+ below 50 mg l–1 and Cr3+, Ni2+, Cu2+ up to 100 mg l–1, did not significantly inhibit citric acid production.  相似文献   

16.
In this paper we report the regulation of Aspergillus niger growth rate during citric acid fermentation in a stirred tank bioreactor. For this, the influence of dissolved oxygen concentration in a medium on intracellular pH values and consequently on overall microbial metabolism was emphasized. Intracellular pH of mycelium grown under different concentrations of dissolved oxygen in the medium was determined. Sensitivity of proteins toward proton concentration is well recognized, therefore pH influences on the activities of key regulatory enzymes of Aspergillus niger were determined at pH values similar to those detected in the cells grown under lower dissolved oxygen concentrations. The results have shown significantly reduced specific activities of hexokinase, 6-phosphofructokinase and glucose-6-phosphate dehydrogenase in more acidic environment, while pyruvate kinase was found to be relatively insensitive towards higher proton concentration. As expected, due to the reduced specific activities of regulatory enzymes under more acidic conditions, overall metabolism should be hindered in the medium with lower dissolved oxygen concentration which was confirmed by detecting the reduced specific growth rates. From the studies, we conclude that dissolved oxygen concentration affects the intracellular pH and thus growth rate of Aspergillus niger during the fermentation process.  相似文献   

17.
The quantitative effects of pH, temperature, time of fermentation, sugar concentration, nitrogen concentration and potassium ferrocyanide on citric acid production were investigated using a statistical experimental design. It was found that palmyra jaggery (sugar syrup from the palmyra palm) is a suitable substrate for increasing the yield of citric acid using Aspergillus niger MTCC 281 by submerged fermentation. Regression equations were used to model the fermentation in order to determine optimum fermentation conditions. Higher yields were obtained after optimizing media components and conditions of fermentation. Maximum citric acid production was obtained at pH 5.35, 29.76 °C, 5.7 days of fermentation with 221.66 g of substrate/l, 0.479 g of ammonium nitrate/l and 2.33 g of potassium ferrocyanide/l.  相似文献   

18.
The present study describes the use of vermiculite for enhanced citric acid productivity by a mutant strain of Aspergillus niger NGGCB-101 in a stirred bioreactor of 15.0 l capacity. The maximum amount of citric acid (96.10 g/l) was obtained with the control 144 h after mycelial inoculation. To enhance citric acid production, varying levels of vermiculite were added as an additive into the fermentation medium. The best results were observed when 0.20 g/l vermiculite was added into the medium 24 h after inoculation resulting in the production of 146.88 g citric acid monohydrate/l. The dry cell mass and residual sugar were 11.75 and 55.90 g/l, respectively. Mixed mycelial pellets (1.08–1.28 mm, dia) were observed in the fermented culture broth. When the culture grown at different vermiculite levels was monitored for Q p , Q s and q p , there was a significant enhancement (P 0.05) in these variables over the control (vermiculite-free). Based on these results, it is concluded that vermiculite might affect mycelial morphology and subsequent TCA cycle performance to improve carbon source utilization by the mould, basic parameters for high performance citric acid fermentation.  相似文献   

19.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

20.
Free amino acid pools have been investigated in a citric acid accumulating strain of Aspergillus niger during batch growth under manganese sufficient and deficient conditions by means of an improved chromatographic method. Studies on the mycelial content of several nitrogenous compounds under manganese sufficient and deficient conditions showed that manganese deficiency resulted in lower amino acid pool sizes during trophophase and considerable accumulation during idiophase, and in a reduction of the protein and nucleic acid contents. Addition of cycloheximide to mycelia grown with sufficient manganese also caused an elevation of free amino acid pool sizes, thus indicating that impairment of protein synthesis by manganese deficiency is responsible for the observed rise in amino acid concentration. Furthermore it was observed that the manganese deficient mycelia excreted high amounts of all amino acids suggesting that manganese deficiency may also affect membrane permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号