首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effects of dilution rates on the performance of a two-stage fermentation system for a recombinant Escherichia coli culture were studied. Dilution rate determines the apparent or averaged specific growth rate of a heterogeneous population of cells in the recombinant culture. The specific growht rate affects the genetic parameters involved in product formation in the second stage, such as plasmid stability, plasmid content, and specific gene expression rate. Kinetic models and correlations were developed for these parameters based on experimental data. Simulations of plasmid stability in the first stage showed that for longer fermentation periods, plasmid stability is better at higher dilution rates. However, the plasmid content is lower at these dilution rates. The optimal apparent specific growth rate for maximum productivity in the second stage was determined using two methods: (1) direct search for a constant specific growth rate, and (2) dynamic optimization using the maximum principle for a time-dependent specific growth rate profile. The results of the calculations showed that the optimum constant apparent specific growth rate for maximum over-all productivity is 0.40 h(-1). This coincides with the optimal specific growht rate for maximum plasmid content in the expressed stage. A 3.5% increase in overall productivity can be obtained by using a linear time dependent apparent specific growth rate control, mu(2)(t) = 0.0007t, in the course of the fermentation time.  相似文献   

3.
A leucine auxotroph strain of Saccharomyces cerevisiae was used to study plasmid stability and expression using a recombinant plasmid, which contained a foreign gene for firefly luciferase (luc). This recombinant yeast was tested in a series of continuous cultures in semi-defined media with varying concentrations of yeast extract in order to study its effect on stability. While the biomass concentration and luciferase activity increased with increasing concentrations of yeast extract, the plasmid stability declined. An analysis of the growth rates showed that the recombinants enjoyed a growth rate advantage over the plasmid-free cells at critically low yeast extract concentrations, possibly due to leucine starvation in the media. A two-stage cultivation strategy was designed in order to create a yeast extract limited environment so that plasmid-free cells could not grow and overtake the recombinant cells. The cells were cultivated in selective media in the first stage, and then transferred continuously to the second stage where the media was enriched by feeding yeast extract. The feed rate was kept low in order to ensure yeast extract and hence leucine starvation, thereby selecting against the plasmid-free cells. This strategy resulted in a stable existence of recombinant cells, which stabilized around 60% at steady state during the tested period of cultivation. The complex nitrogen feed helped in increasing the cell density and volumetric activity by approximately 9 and 18-fold respectively with respect to that achieved in minimal medium. The experimental data was used to formulate a mathematical model to predict cell growth and plasmid stability in two-stage cultivation, which correctly explained the experimental data.  相似文献   

4.
A stable continuous culture has been maintained for 30 days at a high 20 g/l solvent concentration. This substantial increase in the stability of the continuous culture ofClostridium acetobutylicum at the maximal solvent level was achieved by using a two-stage process with a dilution rate of 0.1 h–1 in the first fermentor and 0.04 h–1 in the second fermentor. The two-stage continuous fermentation allows an optimal growth of cells and induction of solvent metabolism in the first stage, and a maximal production yield of solvents in the second stage.  相似文献   

5.
A two-stage culture strategy was studied for continuous high-level production of a foreign protein in the chemically inducible T7 expression system. The first stage is dedicated to the maintenance of plasmid-bearing cells and the second stage to the target protein synthesis by induction of cells coming from the first stage. On entering the second stage, recombinant cells undergo a gradual induction of the target gene expression. These plasmid-bearing cells experience dynamic changes in intracellular compositions and specific growth rates with their individual residence times. Therefore, the overall cultural characteristics in the production stage are really averages of the contributions from the various cells with different residence times. The behavior of the two-stage culture is described by a model, which accounts for dynamic variations of cell growth and protein synthesis rates with cell residence times. Model simulations were compared with experimental results at a variety of operating conditions such as inducer concentration and dilution rate. This model is useful for understanding the behavior of two-stage continuous cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
A cell recycle system is studied for two-stage continuous fermentation. Cell recycle around the second stage provides higher cell concentrations than processes without recycle and a longer residence time of the cell, which is necessary for inducible products, especially in recombinant cell fermentation. Residence time distribution of the cell in the fermentor is important for the optimization of inducible products. The residence time distributions are studied for the cases with and without significant cell growth in the second stage. With cell growth in the second stage, three cases are considered. These are the cases of (1) zero residence time for two daughter cells after the cell division, (2) zero residence time of one daughter cell after the cell division and inherited residence time for the other daughter cell from the mother cell after the cell division, and (3) two daughter cells having the residence time of the mother cell after the cell division.  相似文献   

7.
Summary Production of tryptophan by a temperature sensitive recombinant microorganism (Escherichia coli W3110 trpLDtrpR ts tna (pCRT185)) was investigated. In a single-stage continous culture, at an elevated temperature, 42°C (derepressed condition), tryptophan concentration increased in an early phase of the fermentation, and then gradually decreased with time. The reduction in the production rate was mostly due to the segregation of the plasmid and subsequent increase of plasmid-free cells. However, the plasmid could be maintained stable at 37°C, with repressed condition oftrp-operon, over 200 generations. A two-stage continuous culture system, i.e. cell growth was maintained in the first stage at 37°C and gene expression was induced in the second stage at 42°C, was therefore tested to improve the performance of the fermentation system. Operation of the two-stage system showed that the plasmid stability was significantly improved, and the specific rate of tryptophan production was maintained almost constant for more than 500 hours in the second stage.  相似文献   

8.
The plasmid stability under the repressed state of cloned gene was studied theoretically as well as experimentally using recombinant E. coli K12DeltaH1Deltatrp/pPLc23trpA1 as a "host-vector" model system. The important kinetic parameters studied were the plasmid loss rate (theta) describing the rate at which the plasrnid-harboring cells lose plas-mids and the plasmid-free cells are generated per unit time and the difference in growth rates (Delta) between the two genotypes. These parameters were carefully defined, studied, and compared with other key kinetic parameters involved in the recombinant fermentation to further our understanding of metabolism of recombinants. The ratio of the concentration of plasmid-free cells to plasmid-harboring cells (Omega) was introduced, and the mathematical model was derived and used for the determination of the kinetic parameters associated with plasmid instability. These methods developed based on the theoretical considerations were tested experimentally. The results of these methods were compared, and the best method was selected and recommended. The effect of temperature and dilution rate on kinetic parameters theta and Delta were also studied in continuous culture, in order to provide some practical information related to the operation and control of recombinant fermentation processes.  相似文献   

9.
The effects of nitrogen and phosphate in batch and continuous AEB fermentations were tested. Both nitrogen- and phosphate-limited fermentations favored acid formation but not solvent production. A coupled two-stage continuous fermentation was performed for 30 days with a nitrogen-limited first stage fermentation for enhanced acid production. The bacteria from the acidogenic phase (first stage) fermentation were continuously pumped into a 14-l second stage fermentor with supplemental glucose and nitrogen for solvent production. The second stage fermentor had a maximum butanol productivity of 0.4 g l−1 h−1 (total solvent production was 0.6 g l−1 h−1) at a dilution rate of 0.06 h−1.  相似文献   

10.
Continuous-culture population dynamics of recombinant bacteria are predicted with a structured kinetic model. The instantaneous specific growth rates of the plasmid-bearing and plasmidfree cells are explicitly calculated from their metabolic activities. The resultant growth-rate differential (between plasmid-bearing and plasmid-free cells) is dynamic and changes over the course of a fermentation. Further, the growth-rate differential is a function of dilution rate. We present the experimental determination of model constants governing plasmid replication and foreign protein expression for a host/vector systemE. coli RR1 [pBR329]. For a different experimental system, we estimate the increased polypeptide expression from a DNA insert solely from the instability population dynamics. Stability predictions agree quite well with experimental observations from the literature and our lab.  相似文献   

11.
Growth and protease production of Bacillus subtilis in semisynthetic and synthetic media were studied in batch culture and in a two-stage, laboratory scale, continuous fermentor. The amount, of extracellular protease production was measured under specific growth conditions in both stages of the ferment or. At the dilution rates employed, the cells in the first stage of the ferment or produced negligible quantities of protease, and the culture primarily functioned as a continuous inoculum for the second stage of the fermentor. The culture effluent from the second stage of the fermentor contained extracellular protease, on the average, equal to 60 per cent, of the activity that had been found in the supernatant of a 48-hr batch culture grown in a medium having the same composition as that in the continuous fermentor. Extracellular protease was produced in semisynthetic medium by B. subtilis in the two-stage fermentor for as long as 20 days without culture degeneration. Additional studies indicated that continuous protease production could also be achieved in a synthetic medium. The RNA/ protein ratios of cells grown in semisynthetic medium in batch culture and in each stage of the two-stage fermentor were examined. There was a positive correlation between the amount of protease produced by the cells and their RNA/ protein ratio. Techniques employed for continuous production of protease by B. subtilis and the potential use of the method for investigating the control of secondary metabolite synthesis are discussed.  相似文献   

12.
The instantaneous specific growth rate of a recombinant bacterial culture is directly calculated using a simple structured kinetic modeling approach. Foreign plasmid replication and foreign protein expression represent metabolic burdens to the host cell. The individual effects of these plasmid-mediated activities on the growth rate of plasmid-bearing cells are estimated separately. The dynamic and steady state simulations of the model equations show remarkable agreement with widely observed experimental trends in plasmid copy number and foreign protein content. The model provides an important tool for understanding and controlling plasmid instability in recombinant bacterial fermentations. The modeling framework employed here is suitable for studying the metabolism and growth of a variety of microbial cultures.  相似文献   

13.
Summary A high penicillin-producing Penicillium chrysogenum strain immobilized in calcium alginate beads was used for continuous penicillin fermentation in a bubble column and in a conical bubble fermentor. The fermentation was limited by the growth rate, dilution rates and the stability of the alginate beads. The immobilized cells lost their ability to produce penicillin in the bubble column after 48 h from beginning of the continuous fermentation. In the conical bubble fermentor the immobilized cells remained active for more than 7 days. This bioreactor ensured a good distribution of nutrients and oxygen as well as a higher mechanical stability of the alginate beads.  相似文献   

14.
Growth of Bacillus subtilis TN106[pAT5] and synthesis of plasmid-encoded protein (alpha-amylase) are investigated in batch, continuous, and fed-batch cultures using a defined medium containing glucose and/or starch as the carbohydrate source. The batch culture studies reveal that reduced availability of arginine hampers growth of recombinant cells (which lack an arginine synthesis gene) but promotes production of alpha-amylase and substitution of glucose by starch as the carbohydrate source leads to slower growth of recombinant cells and increased production of alpha-amylase per unit cell mass. Retention of recombinant cells over prolonged periods in continuous cultures is not possible without continuous application of antibiotic selection pressure owing to segregational plasmid instability. Fed-batch experiments with constant volumetric feed rate demonstrate that alpha-amylase production is enhanced at lower feed concentration of starch (sole carbohydrate source) and lower volumetric feed rate. Such slow addition of starch is however not conducive for growth of recombinant cells. The expression of the thermostable alpha-amylase gene carried on the recombinant plasmid pAT5 (derived from a plasmid isolated from a thermophilic bacterium) is promoted at higher temperatures, while growth of recombinant cells is depressed. In all batch and fed-batch experiments, production of alpha-amylase is observed to be inversely related to growth of recombinant cells. The efficacy of two-stage bioreactor operations, with growth of recombinant cells being promoted in the first stage and alpha-amylase production in the second stage, in attaining increased bulk alpha-amylase activity is demonstrated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
As part of the process optimization of a two-stage continuous culture system, the effect of growth rate mu(2) (app) on the performance of the second stage (production stage) was studied in a recombinant Escherichia coli K12 (DeltaH1Deltatrp/pPLc23trpA1). Important parameters considered were specific gene expression rate, plasmid content, and plasmid stability, all of which were closely related to the cell growth rate and the production rate of the cloned gene product (trpalpha). When operating conditions were maintained constant (T(1) = 35 degrees C, D(1) = 0.9 h(-1), T(2) = 40 degrees C, and D(2) = 0.7 h(-1)) and mu(2) (app) was varied, plasmid content in the second stage showed its maximum at mu(2) (app) = 0.4 h(-1) and decreased thereafter. Specific gene expression rate linearly increased with increasing mu(2) (app), while plasmid stability decreased. Optimum cell growth rate giving the maximum value in overall productivity was observed at around mu(2) (app) = 0.4 h(-1). The contribution or role of the three parameters, specific gene expression rate, plasmid content, and plasmid stability in exhibiting the maximum productivity at the optimal mu(2) (app) is discussed.  相似文献   

16.
17.
重组大肠杆菌在诱导表达人表皮生长因子的过程促使细菌的生长受到抑制,一部分重组菌丧失了分裂能力,但仍保持着一定的代谢活力,分离成为存活但不能培养的细菌,根据大肠杆菌在表达外源蛋白过程中细胞生理状态的不同将细菌分为三类,提出一个描述诱导表达过程中重组大肠杆菌分离、生长的动力学模型.应用遗传算法对不同底物浓度的细胞生长、分离和产物合成的动力学参数进行了有效地估计,避免了传统算法可能陷于局部最优的问题,模型计算结果与实验结果吻合良好.分离模型在初始糖浓为5-20g/L的范围内可以较好地描述发酵过程中细胞生长、分离和目标产物表达的过程并具有一定的预测能力.  相似文献   

18.
19.
The optimal temperature control policy to be followed in the operation of a two-stage fermentation system in which gene expression is induced by a temperature-sensitive gene switching system was studied. A genetically structured model was used to describe product formation, and kinetic equations based on experimental data were used to quantify the specific gene expression rate and parameters that affect plasmid instability. A constant temperature control policy and temperature profiling control policy including temperature cycling were studied and compared. Maximum average production rate was obtained from a temperature control policy in which the second stage was operated initially at about 40.5 degrees C and the temperature decreased slightly to a constant value at 40.0 degrees C. The maximum average production rate, which corresponds to the optimal temperature control policy, for an operation of 180 h was 29.7 units of protein (mg of cells)-1 h-1.  相似文献   

20.
Production of glucoamylase by recombinant Saccharomyces cerevisiae C468/pGAC9 (ATCC 20690) in a continuous stirred tank bioreactor was studied at different dilution rates. Plasmid stability was found to be growth (dilution rate) dependent; it increased with the dilution rate. Bioreactor productivity and specific productivity also increased with the dilution rate. A kinetic equation was used to model the plasmid stability kinetics. The growth rate ratio between plasmid-carrying and plasmid-free cells decreased from 1.397 to 1.215, and segregational instability or probability of plasmid loss from each cell division decreased from 0.059 to 0.020 as the dilution rate increased from 0.10 to 0.37 1/h. The specific growth rates increased with dilution rate, while the growth rate difference between plasmid-carrying and plasmid-free cell populations was negligible. This was attributed to the low copy number of the hybrid plasmid pGAC9. Thus, the growth rate had no significant effect on plasmid instability. The proposed kinetics was consistent with experimental results, and the model simulated the experimental data well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号