首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adenovirus mutant dl1520 (ONYX-015) does not express the E1B-55K protein that binds and inactivates p53. This virus replicates in tumor cells with mutant p53, but not in normal cells with functional p53. Although intra-tumoral injection of dl1520 shows promising responses in patients with solid tumors, previous in vitro studies have not established a close correlation between p53 status and dl1520 replication. Here we identify loss of p14ARF as a mechanism that allows dl1520 replication in tumor cells retaining wild-type p53. We demonstrate that the re-introduction of p14ARF into tumor cells with wild-type p53 suppresses replication of dl1520 in a p53-dependent manner. Our study supports the therapeutic use of dl1520 in tumors with lesions within the p53 pathway other than mutation of p53.  相似文献   

2.
Hann B  Balmain A 《Journal of virology》2003,77(21):11588-11595
ONYX-015 (dl1520) is an E1B 55-kilodalton protein-deficient replicating adenovirus that is currently in clinical trials as an antitumor agent. On the basis of the observation that the E1B 55kD gene product is able to bind to and inactivate p53, ONYX-015's mechanism of action is proposed to involve selective replication in and killing of p53-deficient cells. While its efficacy as a therapeutic agent appears evident, the virus's mechanism of cellular selectivity, including a possible role of p53 in this regard, is less clear. Indeed, there have been a number of recent reports suggesting that the p53 status of target cells does not reliably predict ONYX-015 replication or cell killing. To address the role of p53 in ONYX-015 selectivity, we have undertaken a rigorous analysis of the behavior of this virus in small airway-derived primary human epithelial cells expressing either dominant-negative or gain-of-function mutant p53 genes. Examination of small airway epithelial cells expressing a variety of p53 mutant alleles revealed that while all were able to inhibit endogenous p53 activity, only one allele examined, 248W, demonstrated a markedly increased ability to facilitate ONYX-015 replication. This allele is a member of a group of p53 mutants (know as class I mutants) characterized by retention of global structural conformation but loss of DNA-binding activity. These observations indicate that the nature of the p53 mutation affects ONYX-015 replication, help reconcile disparate published findings, and may provide criteria by which to direct clinical application of ONYX-015.  相似文献   

3.
In order to take advantage of cell replication machinery, viruses have evolved complex strategies to override cell cycle checkpoints and force host cells into S phase. To do so, virus products must interfere not only with the basal cell cycle regulators, such as pRb or Mad2, but also with the main surveillance pathways such as those controlled by p53 and ATM. Recently, a number of defective viruses has been produced which, lacking the latter ability, are incapable of replicating in normal cells but should be able to grow and finally lyse those cells that, such as the tumor cells, have lost their surveillance mechanisms. A prototype of these oncolytic viruses is the E1B55K-defective Adenovirus ONYX-015, which was predicted to selectively replicate and kill p53-deficient cancer cells. We found that, despite wt p53 and notwithstanding the activation of the checkpoint regulators p53, ATM, and Mad2, ONYX-015 actively replicated in HUVEC cells. Furthermore, ONYX-015 replication induced a specific phenotype, which is distinct from that of the E4-deleted adenovirus dlE4 Ad5, although both viruses express the main regulatory region E1A. This phenotype includes overriding of the G1/S and G2/M checkpoints, over-expression of MAD2 and retardation of mitosis and accumulation of polyploid cells, suggesting the occurrence of alterations at the mitotic-spindle checkpoint and impairment of the post-mitotic checkpoint. Our data suggest that viral E1A and E4 region products can override all host cell-checkpoint response even at the presence of a full activation of the ATM/p53 pathway. Furthermore, the E4 region alone seems to act independently of the E1B55K virus product in impairing the ATM-dependent, p53-independent G2/M checkpoint since dlE4 Ad5-infected cells arrested in G2 while ONYX-015-infected cells did enter mitosis.  相似文献   

4.
The INK4a locus on chromosome 9p21 encodes two structurally distinct tumor suppressor proteins, p16(INK4a) and the alternative reading frame protein, ARF (p19(ARF) in mouse and p14(ARF) in human). Each of these proteins has a role in senescence of primary cells and activates pathways for cell cycle control and tumor suppression. The current prevailing model proposes that p19(ARF) activates p53 function by antagonizing its degradation by MDM2. It was, however, recently shown that stabilization of p53 by p14(ARF) occurs independent of the relocalization of MDM2 to the nucleolus. We have identified a novel collaborator of ARF, CARF. It co-localizes and interacts with ARF in the nucleolus. We demonstrate that CARF is co-regulated with ARF, cooperates with it in activating p53, and thus acts as a novel component of the ARF-p53-p21 pathway.  相似文献   

5.
6.
p14ARF inhibits the growth of p53 deficient cells in a cell-specific manner   总被引:3,自引:0,他引:3  
While p14(ARF) suppression of tumorigenesis in a p53-dependent manner is well studied, the mechanism by which p14(ARF) inhibits tumorigenesis independently of p53 remains elusive. A variety of factors have been reported to play a role in this latter process. We report here that p14(ARF) displays different effects on the anchorage-dependent and -independent growth of p53-null/Mdm2 wild type cells. p14(ARF) blocks both the anchorage-dependent and-independent (soft agar) proliferation of 293T and p53(-/-) HCT116, but not p53-null H1299 lung carcinoma cells. While p14(ARF) had no effect on the anchorage-dependent proliferation of p53(-/-) MEFs and Ras12V-transformed p53(-/-) MEFs, it inhibited the growth of Ras12V-transformed p53(-/-) MEFs in soft agar. Furthermore, ectopic expression of p14(ARF) did not lead to degradation of the E2F1 protein and did not result in the reduction of E2F1 activity detected by two E2F1 responsible promoters, Apaf1 and p14(ARF) promoter, in 293T, p53(-/-) HCT116, and H1299 cells. This is consistent with our observations that p14(ARF) did not result in G1 arrest, but induced apoptosis via Bax up-regulation. Taken together, our data demonstrate that the response of p53-null cells to ARF is cell type dependent and involves factors other than Mdm2 and E2F1.  相似文献   

7.
Inactivation of the ARF-p53 tumor suppressor pathway leads to immortalization of murine fibroblasts. The role of this pathway in immortalization of human epithelial cells is not clear. We analyzed the functionality of the p14(ARF)-p53 pathway in human mammary epithelial cells (MEC) immortalized by human papillomavirus 16 (HPV16) E6, the p53 degradation-defective E6 mutant Y54D, or hTERT. E6-MEC or E6Y54D-MEC maintains high-level expression of p14(ARF). Late-passage hTERT-immortalized MEC express p53 but down-regulate p14(ARF). Enforced expression of p14(ARF) induces p53-dependent senescence in hTERT-MEC, while both E6-MEC and E6Y54D-MEC are resistant. We show that E6Y54D inhibits p14(ARF)-induced activation of p53 without inactivation of the p53-dependent DNA damage response. Hence, p53 degradation and inhibition of p14(ARF) signaling to p53 are independent functions of HPV16 E6. Our observations imply that long-term proliferation of MEC requires inactivation of the p14(ARF)-p53 pathway.  相似文献   

8.
The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16(INK4a) and p14(ARF). Although primarily proposed to require a functional p53.Mdm-2 signaling axis, recently p14(ARF) has been implicated in p53-independent cell cycle regulation. Here we show that p14(ARF) preferentially induces a G(2) arrest in tumor cells lacking functional p53 and/or p21. Expression of p14(ARF) impaired mitotic entry and enforced a primarily cytoplasmic localization of p34(cdc2) that was associated with a decrease in p34(cdc2) kinase activity and reduced p34(cdc2) protein expression. A direct physical interaction between p14(ARF) and p34(cdc2) was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14(ARF)-induced depletion of p34(cdc2) was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G(2)-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34(cdc2) using a constitutively active, phosphorylation-deficient p34(cdc2AF) mutant alleviated this p14(ARF)-induced G(2) arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14(ARF) arrests cells lacking functional p53/p21 in the G(2) phase of the cell cycle by targeting p34(cdc2) kinase. This may represent an important fail-safe mechanism by which p14(ARF) protects p53/p21-deficient cells from unrestrained proliferation.  相似文献   

9.
多种肿瘤的抑癌基因p53发生了突变。一种腺病毒E1B缺失体ONYX-015能够在p53突变的肿瘤细胞内有效地复制而导致痛细胞的裂解,但不能在p53正常的细胞内复制。这种p53选择性抗瘤病毒代表了一类新的抗癌武器:溶癌病毒。  相似文献   

10.
The INK4A/ARF locus on chromosome 9 is a tumor suppressor gene frequently mutated in human cancers. In order to study the effects of p14ARF expression in tumor cells, we constructed a recombinant adenovirus containing p14ARF cDNA (Adp14ARF). Adp14ARF infection of U2OS osteosarcoma cells which has wild type p53 and mutant p14ARF revealed high levels of p14 (ARF) expression within 24h. In addition, Adp14ARF-mediated expressing of p14 (ARF) was associated with increased levels of p53, p21, and mdm2 protein. Growth inhibition assays following Adp14ARF infection demonstrated that the growth of U2OS cells was inhibited relative to infection with control virus. Furthermore, TUNEL analysis as well as PARP cleavage assays demonstrated that Adp14ARF infection was associated with increased apoptosis in U2OS cell line and that it was associated with Adp14ARF induced overexpression of Fas and Fas-L. Addition of Fas-L neutralizing antibody NOK-1 decreased Adp14-mediated cell death, indicating that p14 (ARF) induction of the Fas pathway is associated with increased apoptosis. The finding that Adp14ARF infection did not induce Fas expression in U2OS/E6 and MCF/E6 cells suggests that wild type p53 expression may be necessary for Adp14ARF-mediated induction of Fas. The observation that overexpression of p53 by Adp53 infection in MCF-7 does not induce increased Fas protein levels nor apoptotic cell death suggests that p53 overexpression is required but not sufficient enough for apoptosis. These studies suggest there are other mechanisms other than induction of p53 in ARF-mediated apoptosis and gene therapy using Adp14ARF may be a promising treatment option for human cancers containing wild type p53 and mutant or deleted p14 expression.  相似文献   

11.
p53-independent apoptosis is induced by the p19ARF tumor suppressor   总被引:6,自引:0,他引:6  
p19(ARF) is a potent tumor suppressor. By inactivating Mdm2, p19(ARF) upregulates p53 activities to induce cell cycle arrest and sensitize cells to apoptosis in the presence of collateral signals. It has also been demonstrated that cell cycle arrest is induced by overexpressed p19(ARF) in p53-deficient mouse embryonic fibroblasts, only in the absence of the Mdm2 gene. Here, we show that apoptosis can be induced without additional apoptosis signals by expression of p19(ARF) using an adenovirus-mediated expression system in p53-intact cell lines as well as p53-deficient cell lines. Also, in primary mouse embryonic fibroblasts (MEFs) lacking p53/ARF, p53-independent apoptosis is induced irrespective of Mdm2 status by expression of p19(ARF). In agreement, p19(ARF)-mediated apoptosis in U2OS cells, but not in Saos2 cells, was attenuated by coexpression of Mdm2. We thus conclude that there is a p53-independent pathway for p19(ARF)-induced apoptosis that is insensitive to inhibition by Mdm2.  相似文献   

12.
The INK4a/ARF locus, which is frequently inactivated in human tumors, encodes two distinct tumor suppressive proteins, ARF and p16INK4a. ARF stabilizes and activates p53 by negating the effects of mdm2 on p53. Furthermore, its function is not restricted to the p53 pathway and it also inhibits cell proliferation in cells lacking p53. Expression of ARF is up-regulated in response to a number of oncogenic stimuli including E2F1. We show here that while oncogenic Ras does not significantly affect p1(4AR)F expression in normal human cells it activates p1(4AR)F in cells containing deregulated E2F. Moreover, oncogenic Ras and E2F1 synergize in activating p1(4AR)F expression. Activation of p1(4AR)F promoter by E2F1 persists in the absence of the consensus E2F-binding sites in this promoter, indicating that this activation also occurs through non- canonical binding sites. The activation by oncogenic Ras requires both E2F and Sp-1 activity, demonstrating the complex regulation of p14(ARF) in response to oncogenic stimuli.  相似文献   

13.
Mdm2 regulates p53 independently of p19(ARF) in homeostatic tissues   总被引:8,自引:0,他引:8       下载免费PDF全文
Tumor suppressor proteins must be exquisitely regulated since they can induce cell death while preventing cancer. For example, the p19(ARF) tumor suppressor (p14(ARF) in humans) appears to stimulate the apoptotic function of the p53 tumor suppressor to prevent lymphomagenesis and carcinogenesis induced by oncogene overexpression. Here we present a genetic approach to defining the role of p19(ARF) in regulating the apoptotic function of p53 in highly proliferating, homeostatic tissues. In contrast to our expectation, p19(ARF) did not activate the apoptotic function of p53 in lymphocytes or epithelial cells. These results demonstrate that the mechanisms that control p53 function during homeostasis differ from those that are critical for tumor suppression. Moreover, the Mdm2/p53/p19(ARF) pathway appears to exist only under very restricted conditions.  相似文献   

14.
Alterations in the p14(ARF) tumor suppressor are frequent in many human cancers and are associated with susceptibility to melanoma, pancreatic cancer, and nervous system tumors. In addition to its p53-regulatory functions, p14(ARF) has been shown to influence ribosome biogenesis and to regulate the endoribonuclease B23, but there remains considerable controversy about its nucleolar role. We sought to clarify the activities of p14(ARF) by studying its interaction with ribosomes. We show that p14(ARF) and B23 interact within the nucleolar 60 S preribosomal particle and that this interaction does not require rRNA. In contrast to previous reports, we found that expression of p14(ARF) does not significantly alter ribosome biogenesis but inhibits polysome formation and protein translation in vivo. These results suggest a ribosome-dependent p14(ARF) pathway that regulates cell growth and thus complements p53-dependent p14(ARF) functions.  相似文献   

15.
The ARF (p19ARF for the mouse ARF consisting of 169 amino acids and p14ARF for the human ARF consisting of 132 amino acids) genes upregulate p53 activities to induce cell cycle arrest and sensitize cells to apoptosis by inhibiting Mdm2 activity. p53-independent apoptosis also is induced by ectopic expression of p19ARF. We constructed various deletion mutants of p19ARF with a cre/loxP-regulated adenoviral vector to determine the regions of p19ARF which are responsible for p53-independent apoptosis. Ectopic expression of the C-terminal region (named C40) of p19ARF whose primary sequence is unique to the rodent ARF induced prominent apoptosis in p53-deficient mouse embryo fibroblasts. Relatively low-grade but significant apoptosis also was induced in p53-deficient mouse embryo fibroblasts by ectopic expression of p19ARF1-129, a p19ARF deletion mutant deficient in the C40 region. In contrast, ectopic expression of the wild-type p14ARF did not induce significant apoptosis in human cells. Taken together, we concluded that p53-independent apoptosis was mediated through multiple regions of the mouse ARF including C40, and the ability of the ARF gene to mediate p53-independent apoptosis has been not well conserved during mammalian evolution.  相似文献   

16.
The E1B-55K protein plays an important role during human adenovirus type 5 productive infection. In the early phase of the viral infection, E1B-55K binds to and inactivates the tumor suppressor protein p53, allowing efficient replication of the virus. During the late phase of infection, E1B-55K is required for efficient nucleocytoplasmic transport and translation of late viral mRNAs, as well as for host cell shutoff. In an effort to separate the p53 binding and inactivation function and the late functions of the E1B-55K protein, we have generated 26 single-amino-acid mutations in the E1B-55K protein. These mutants were characterized for their ability to modulate the p53 level, interact with the E4orf6 protein, mediate viral late-gene expression, and support virus replication in human cancer cells. Of the 26 mutants, 24 can mediate p53 degradation as efficiently as the wild-type protein. Two mutants, R240A (ONYX-051) and H260A (ONYX-053), failed to degrade p53 in the infected cells. In vitro binding assays indicated that R240A and H260A bound p53 poorly compared to the wild-type protein. When interaction with another viral protein, E4orf6, was examined, H260A significantly lost its ability to bind E4orf6, while R240A was fully functional in this interaction. Another mutant, T255A, lost the ability to bind E4orf6, but unexpectedly, viral late-gene expression was not affected. This raised the possibility that the interaction between E1B-55K and E4orf6 was not required for efficient viral mRNA transport. Both R240A and H260A have retained, at least partially, the late functions of wild-type E1B-55K, as determined by the expression of viral late proteins, host cell shutoff, and lack of a cold-sensitive phenotype. Virus expressing R240A (ONYX-051) replicated very efficiently in human cancer cells, while virus expressing H260A (ONYX-053) was attenuated compared to wild-type virus dl309 but was more active than ONYX-015. The ability to separate the p53-inactivation activity and the late functions of E1B-55K raises the possibility of generating adenovirus variants that retain the tumor selectivity of ONYX-015 but can replicate more efficiently than ONYX-015 in a broad spectrum of cell types.  相似文献   

17.
18.
19.
We generated A21-13 cells expressing p14(ARF) in the presence of doxycycline in order to examine the stability of p14(ARF) protein. The effects of proteasome inhibitor MG132 on p14(ARF) protein stabilization were detectable using our experimental procedure. Introduction of mutant p53 did not affect MG132-mediated p14(ARF) protein stabilization. We found that phorbol ester TPA (12-o-tetradecanoyl-phorbol 13-acetate) stabilized p14(ARF) protein and that p53 status had no effect on TPA-mediated stabilization. TPA-mediated stabilization was abolished by staurosporine but not by lovastatin or U0126. We further investigated which isoforms of PKC were involved in TPA-mediated p14(ARF) stabilization using short-interference RNA. Knockdown of PKCalpha, but not PKCdelta, attenuated TPA-mediated p14(ARF) stabilization. These findings suggest that PKCalpha is involved in TPA-mediated stabilization of p14(ARF) protein, and this effect of TPA was not affected by the Ras/MAPK pathway or p53 status. Our results are indicative of a novel role of PKC in p14(ARF) protein stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号