首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the effect of mutations in the p53 C-terminal domain on MDM2-mediated degradation, we introduced single and multiple point mutations into a human p53 cDNA at four putative acetylation sites (amino acid residues 372, 373, 381, and 382). Substitution of all four lysine residues by alanines (the A4 mutant) and single lysine-to-alanine substitutions were functional in sequence-specific DNA binding and transactivation; however, the A4 mutant protein was resistant to MDM2-mediated degradation, whereas the single lysine substitutions were not. Although the A4 mutant protein and the single lysine substitutions both bound MDM2 reasonably well, the single lysine substitutions underwent normal MDM2-dependent ubiquitination, whereas the A4 protein was inefficiently ubiquitinated. In addition, the A4 mutant protein was found in the cytoplasm as well as in the nucleus of a subpopulation of cells, unlike wild-type p53, which is mostly nuclear. The partially cytoplasmic distribution of A4 mutant protein was not due to a defect in nuclear import because inhibition of nuclear export by leptomycin B resulted in nuclear accumulation of the protein. Taken together, the data suggest that mutations in the putative acetylation sites of the p53 C-terminal domain interfere with ubiquitination, thereby regulating p53 degradation.  相似文献   

2.
The basal level of the tumor suppressor p53 is regulated by MDM2-mediated ubiquitination at specific lysines, which leads to p53 nuclear export and degradation. Upon p53 activation, however, these lysines become acetylated by p300/CREB-binding protein. Here we have reported an unexpected finding that p300-mediated acetylation also regulates p53 subcellular localization and can promote cytoplasmic localization of p53. This activity is independent of MDM2 but requires a p53 nuclear export signal and acetylation of multiple lysines by p300. Mechanistically, we showed that conversion of a minimal four of these lysines to alanines but not arginines mimics p300-mediated p53 nuclear export, and these lysine-neutralizing mutations effectively prevent p53 tetramerization, thus exposing the oligomerization-regulated nuclear export signal. Our study suggested a threshold mechanism whereby the degree of acetylation regulates p53 nucleus-cytoplasm trafficking by neutralizing a lysine-dependent charge patch, which in turn, controls oligomerization-dependent p53 nuclear export.  相似文献   

3.
Trypsin cleaves exclusively C-terminal to arginine and lysine residues   总被引:2,自引:0,他引:2  
Almost all large-scale projects in mass spectrometry-based proteomics use trypsin to convert protein mixtures into more readily analyzable peptide populations. When searching peptide fragmentation spectra against sequence databases, potentially matching peptide sequences can be required to conform to tryptic specificity, namely, cleavage exclusively C-terminal to arginine or lysine. In many published reports, however, significant numbers of proteins are identified by non-tryptic peptides. Here we use the sub-parts per million mass accuracy of a new ion trap Fourier transform mass spectrometer to achieve more than a 100-fold increased confidence in peptide identification compared with typical ion trap experiments and show that trypsin cleaves solely C-terminal to arginine and lysine. We find that non-tryptic peptides occur only as the C-terminal peptides of proteins and as breakup products of fully tryptic peptides N-terminal to an internal proline. Simulating lower mass accuracy led to a large number of proteins erroneously identified with non-tryptic peptide hits. Our results indicate that such peptide hits in previous studies should be re-examined and that peptide identification should be based on strict trypsin specificity.  相似文献   

4.
5.
The cellular level of the tumor suppressor p53 is tightly regulated through induced degradation via the ubiquitin/proteasome system. The ubiquitin ligase Mdm2 plays a pivotal role in stimulating p53 turnover. However, recently additional ubiquitin ligases have been identified that participate in the degradation of the tumor suppressor. Apparently, multiple degradation pathways are employed to ensure proper destruction of p53. Here we show that the chaperone-associated ubiquitin ligase CHIP is able to induce the proteasomal degradation of p53. CHIP-induced degradation was observed for mutant p53, which was previously shown to associate with the chaperones Hsc70 and Hsp90, and for the wild-type form of the tumor suppressor. Our data reveal that mutant and wild-type p53 transiently associate with molecular chaperones and can be diverted onto a degradation pathway through this association.  相似文献   

6.
7.
Protecting p53 from degradation   总被引:1,自引:0,他引:1  
Inactivation of the p53 function is a common event in cancer. Approx. 50% of human tumours express mutant p53 and there is evidence that in others, including many childhood tumours, p53 function is impaired in other ways. These defects on p53 function may be due to the alteration of cellular factors that modulate p53 or to the expression of viral oncoproteins. Radiotherapy and many of the chemotherapeutic drugs currently used in cancer treatment are potent activators of p53. However, most of these therapies have a serious drawback; that is, the long-term consequences of their DNA-damaging effects. Understanding the mechanisms regulating p53 stability is crucial for the development of new strategies to activate p53 non-genotoxically. Here we describe the effect of a potent activator of the p53 response, the nuclear export inhibitor leptomycin B, on Mdm2 degradation and we provide evidence for the oligomerization of the p14ARF tumour suppressor and Mdm2 inhibitor in response to oxidative stress.  相似文献   

8.
9.
10.
11.
12.
We propose here a novel p53-targeting radio-cancer therapy using p53 C-terminal peptides for patients having mutated p53. Hoechst 33342 staining showed that X-ray irradiation alone efficiently induced apoptotic bodies in wild-type p53 (wt p53) human head and neck cancer cells transfected with a neo control vector (SAS/neo cells), but hardly induced apoptotic bodies in mutation-type p53 (m p53) cells transfected with a vector carrying the m p53 gene (SAS/m p53). In contrast, transfection of p53 C-terminal peptides (amino acid residues 361-382 or 353-374) via liposomes caused a remarkable increase of apoptotic bodies in X-ray-irradiated SAS/m p53 cells, but did not enhance apoptotic bodies in X-ray-irradiated SAS/neo cells. In immunocytochemical analysis, positively stained cells for active type caspase-3 were observed at high frequency after X-ray irradiation in the SAS/m p53 cells pre-treated with p53 C-terminal peptides. In SAS/neo cells, positively stained cells for active type caspase-3 were observed with X-ray irradiation alone. Furthermore, protein extracts from X-ray-irradiated SAS/m p53 cells showed higher DNA-binding activity of p53 to p53 consensus sequence when supplemented in vitro with p53 C-terminal peptides than extracts from non-irradiated SAS/m p53 cells. These results suggest that radiation treatment in the presence of p53 C-terminal peptides is more effective for inducing p53 -mediated apoptosis than radiation treatment alone or p53 C-terminal peptide treatment alone, especially in m p53 cancer cells. This novel tool for enhancement of apoptosis induction in m p53 cells might be useful for p53-targeted radio-cancer therapy.  相似文献   

13.
14.
15.
16.
17.
Posttranslational modifications of p53, including phosphorylation and acetylation, play important roles in regulating p53 stability and activity. Mouse p53 is acetylated at lysine 317 by PCAF and at multiple lysine residues at the extreme carboxyl terminus by CBP/p300 in response to genotoxic and some nongenotoxic stresses. To determine the physiological roles of p53 acetylation at lysine 317, we introduced a Lys317-to-Arg (K317R) missense mutation into the endogenous p53 gene of mice. p53 protein accumulates to normal levels in p53(K317R) mouse embryonic fibroblasts (MEFs) and thymocytes after DNA damage. While p53-dependent gene expression is largely normal in p53(K317R) MEFs after various types of DNA damage, increased p53-dependent apoptosis was observed in p53(K317R) thymocytes, epithelial cells from the small intestine, and cells from the retina after ionizing radiation (IR) as well as in E1A/Ras-expressing MEFs after doxorubicin treatment. Consistent with these findings, p53-dependent expression of several proapoptotic genes was significantly increased in p53(K317R) thymocytes after IR. These findings demonstrate that acetylation at lysine 317 negatively regulates p53 apoptotic activities after DNA damage.  相似文献   

18.
Ubiquitination and degradation of mutant p53   总被引:2,自引:0,他引:2  
While wild-type p53 is normally a rapidly degraded protein, mutant forms of p53 are stabilized and accumulate to high levels in tumor cells. In this study, we show that mutant and wild-type p53 proteins are ubiquitinated and degraded through overlapping but distinct pathways. While Mdm2 can drive the degradation of both mutant and wild-type p53, our data suggest that the ability of Mdm2 to function as a ubiquitin ligase is less important in the degradation of mutant p53, which is heavily ubiquitinated in an Mdm2-independent manner. Our initial attempts to identify ubiquitin ligases that are responsible for the ubiquitination of mutant p53 have suggested a role for the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein), although other unidentified ubiquitin ligases also appear to contribute. The contribution of Mdm2 to the degradation of mutant p53 may reflect the ability of Mdm2 to deliver the ubiquitinated mutant p53 to the proteasome.  相似文献   

19.
It was shown previously that the p53 protein can recognize DNA modified with antitumor agent cisplatin (cisPt-DNA). Here, we studied p53 binding to the cisPt-DNA using p53 deletion mutants and via modulation of the p53-DNA binding by changes of the protein redox state. Isolated p53 C-terminal domain (CTD) bound to the cisPt-DNA with a significantly higher affinity than to the unmodified DNA. On the other hand, p53 constructs involving the core domain but lacking the C-terminal DNA binding site (CTDBS) exhibited only small binding preference for the cisPt-DNA. Oxidation of cysteine residues within the CD of posttranslationally unmodified full length p53 did not affect its ability to recognize cisPt-DNA. Blocking of the p53 CTDBS by a monoclonal antibody Bp53-10.1 resulted in abolishment of the isolated CTD binding to the cisPt-DNA. Our results demonstrate a crucial role of the basic region of the p53 CTD (aa 363-382) in the cisPt-DNA recognition.  相似文献   

20.
Structural evolution of C-terminal domains in the p53 family   总被引:1,自引:0,他引:1  
Ou HD  Löhr F  Vogel V  Mäntele W  Dötsch V 《The EMBO journal》2007,26(14):3463-3473
The tetrameric state of p53, p63, and p73 has been considered one of the hallmarks of this protein family. While the DNA binding domain (DBD) is highly conserved among vertebrates and invertebrates, sequences C-terminal to the DBD are highly divergent. In particular, the oligomerization domain (OD) of the p53 forms of the model organisms Caenorhabditis elegans and Drosophila cannot be identified by sequence analysis. Here, we present the solution structures of their ODs and show that they both differ significantly from each other as well as from human p53. CEP-1 contains a composite domain of an OD and a sterile alpha motif (SAM) domain, and forms dimers instead of tetramers. The Dmp53 structure is characterized by an additional N-terminal beta-strand and a C-terminal helix. Truncation analysis in both domains reveals that the additional structural elements are necessary to stabilize the structure of the OD, suggesting a new function for the SAM domain. Furthermore, these structures show a potential path of evolution from an ancestral dimeric form over a tetrameric form, with additional stabilization elements, to the tetramerization domain of mammalian p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号