首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eight anesthetized tracheostomized cats were placed in an 8.2-liter airtight chamber with the trachea connected to the exterior. Thirty-two combinations of high-frequency oscillations (HFO) (0.5-30 Hz; 25-100 ml) were delivered for 10 min each in random order into the chamber. Arterial blood gas tensions during oscillation were compared with control measurements made after 10 min of spontaneous breathing without oscillation when the mean arterial PCO2 (PaCO2) was 30.1 Torr. Ventilation due to spontaneous breathing (Vs) and oscillation (Vo) were derived from the chamber pressure trace and a pneumotachograph, respectively. As the oscillation frequency increased, oscillated tidal volume (Vo) decreased from a mean of 39 (0.5 Hz) to 3.3 ml (30 Hz) when 100 ml was delivered to the chamber. From 6-25 Hz, apnea occurred with Vo less than estimated respiratory dead space (VD); the minimum effective Vo/VD ratio was 0.37 +/- 0.05. Although Vo was maximal at 10 Hz at each oscillation volume, the lowest PaCO2 occurred at 2-6 Hz, and arterial PO2 rose as expected during hypocapnia. Above 10 Hz, PaCO2 was determined by Vo and was independent of frequency, whereas at lower frequencies, PaCO2 was related to Vo; below 6 Hz, PaCO2 varied inversely with the calculated alveolar ventilation. As oscillations became more effective, both PaCO2 and Vs fell progressively and were highly correlated; apnea occurred when PaCO2 was reduced by a mean of 4.5 Torr. Mean chamber pressure remained near zero up to 15 Hz, indicating functional residual capacity did not change. We conclude that externally applied HFO can readily maintain gas exchange in vivo, with Vo less than VD at frequencies over 2 Hz.  相似文献   

2.
In dogs, respiratory system resistance (Rrs) is frequency independent, and during high-frequency oscillatory ventilation (HFO) the relationship between CO2 elimination (VCO2) and frequency is linear. In contrast, we found in rabbits a large frequency-dependent decrease in Rrs with increasing frequency along with a nonlinear relationship between frequency and VCO2 (J. Appl. Physiol. 57: 354-359, 1984). We proposed that frequency dependent mechanical properties of the lung account for inter-species differences in the frequency dependence of gas exchange during HFO. In the current study we tested this hypothesis further by measuring VCO2 and Rrs as a function of frequency in a species of monkey (Macaca radiata). In these monkeys, Rrs decreased minimally between 4 and 8 Hz and in general increased at higher frequencies, whereas VCO2 was linearly related to frequency. This is further evidence supporting the hypothesis that nonlinear frequency-VCO2 behavior during HFO is related to frequency-dependent behavior in Rrs.  相似文献   

3.
Spectral analyses were performed on phrenic neurogram recordings from 18 cats to identify high-frequency oscillations (HFOs) inherent in the signals at different phases of inspiratory activity. Gating the analysis for the entire inspiratory phase resulted in dual spectral HFOs (27 and 83 Hz), both of which persisted when the analysis was repeated on the later phase of phrenic inspiratory activity alone (29 and 82 Hz). A third pass at the same data, gating for just the early phase of phrenic discharge, however, resulted in single spectral HFOs at the higher frequency only (86 Hz). Because both early and late recruited phrenic motoneurons carry both higher and lower spectral frequencies, these results demonstrate that the lower frequency HFO is distinctly delayed in onset compared with the higher frequency HFO, the latter of which is believed to have a brain stem origin. This delayed onset may be important in identifying the source of the lower frequency HFO, which appears to be specific to various respiratory efferent systems.  相似文献   

4.
CO2 elimination (VCO2) was monitored during high-frequency oscillation (HFO) over a frequency (f) range of 2-30 Hz in anesthetized and paralyzed rabbits to determine whether effective gas exchange could be achieved in this species, to determine the f and tidal volume (VT) dependence of gas exchange in this species, and to compare these results with those from dog and human studies. We were able to produce VCO2 levels during HFO that exceeded normal steady-state levels of CO2 production with VT's less than the total dead space volume. VCO2 was related to f in a curvilinear fashion, whereas in some rabbits VCO2 became independent of f at higher frequencies. This curvilinear relationship between f and VCO2 is similar to data from humans but contrasts with the linear relationship found in dogs. Evidence is presented indicating frequency-dependent behavior of gas exchange is correlated with a frequency-dependent decrease in respiratory system resistance. We propose that the frequency-dependent mechanical properties of the rabbit lung may also account for the species differences in HFO gas exchange.  相似文献   

5.
Mean airway pressure underestimates mean alveolar pressure during high-frequency oscillatory ventilation. We hypothesized that high inspiratory flows characteristic of high-frequency jet ventilation may generate greater inspiratory than expiratory pressure losses in the airways, thereby causing mean airway pressure to overestimate, rather than underestimate, mean alveolar pressure. To test this hypothesis, we ventilated anesthetized paralyzed rabbits with a jet ventilator at frequencies of 5, 10, and 15 Hz, constant inspiratory-to-expiratory time ratio of 0.5 and mean airway pressures of 5 and 10 cmH2O. We measured mean total airway pressure in the trachea with a modified Pitot probe, and we estimated mean alveolar pressure as the mean pressure corresponding in the static pressure-volume relationship to the mean volume of the respiratory system measured with a jacket plethysmograph. We found that mean airway pressure was similar to mean alveolar pressure at frequencies of 5 and 10 Hz but overestimated it by 1.1 and 1.4 cmH2O at mean airway pressures of 5 and 10 cmH2O, respectively, when frequency was increased to 15 Hz. We attribute this finding primarily to the combined effect of nonlinear pressure frictional losses in the airways and higher inspiratory than expiratory flows. Despite the nonlinearity of the pressure-flow relationship, inspiratory and expiratory net pressure losses decreased with respect to mean inspiratory and expiratory flows at the higher rates, suggesting rate dependence of flow distribution. Redistribution of tidal volume to a shunt airway compliance is thought to occur at high frequencies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.  相似文献   

7.
Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1–25 Hz) with tri‐axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail‐beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim‐tunnel respirometer and free‐swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free‐swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail‐beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail‐beat frequency and swimming style, this study provides a reference point with a medium body‐sized sub‐carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration.  相似文献   

8.
We examined the intra-airway gas transport mediated by high-frequency oscillations (HFO) in 10 nonintubated healthy volunteers using a method based on comparisons of single-breath N2-washout curves obtained after various durations of breath hold or high-frequency oscillations. With a mathematical analysis based on Fick's law of diffusion we computed the local transport parameter, effective diffusivity, during oscillations of frequency 2-24 Hz and tidal volume 10-120 ml and during breath hold alone. Local effective diffusivity increased with both oscillatory frequency and tidal volume at all levels in the tracheobronchial tree; the enhancing effect of tidal volume on local effective diffusivity was more pronounced than that of frequency so that effective diffusivity was greater with larger tidal volume at fixed frequency-tidal volume product (f . VT). The greatest enhancement of gas mixing within the lung during HFO (over breath hold) was seen in the central airways. In previous studies examining CO2 removal rate during HFO (J. Clin. Invest. 68: 1475, 1981), we found that CO2 output was also greater with larger tidal volume at fixed f . VT, and we attributed this to an end constraint imposed by a fresh gas bias flow. Results of the current study, performed without a bias flow, indicate that bias flow end constraint does not solely account for the observed dependence of CO2 output on frequency and tidal volume.  相似文献   

9.
High-frequency jet ventilation (HFJV) was studied in twelve deeply anesthetized, paralyzed dogs. Entrained volume and total expired volume were directly measured by integration of flow. Jet volume was computed from these measurements. Seven dogs were ventilated with a driving pressure of 10 psi at rates of 2 and 5 Hz for each of three mechanical loads: control, thoracoabdominal wrap, and histamine infusion. Both load conditions reduced total expired volume and entrained volume but had no effect on jet volume. Wrap reduced entrainment more at 2 Hz while the effect of histamine infusion was frequency independent. Control arterial blood gases demonstrated that PO2 was higher and PCO2 was lower during 2 Hz ventilation than during 5 Hz ventilation despite equivalent minute volumes. Five additional dogs were studied using control and wrap loads and an additional ventilator setting of 15 psi at 5 Hz. This group demonstrated that wrap reduces entrainment more at lower frequencies for ventilatory settings providing equivalent gas exchange. We conclude that increasing mechanical load reduces entrainment during HFJV and that this reduction is frequency dependent for restrictive loads.  相似文献   

10.
To determine the ventilatory effectiveness of high-frequency oscillation (HFO) at different sites on the body surface, we applied HFO separately to the abdomen, the rib cage, or the whole body in eight anesthetized and paralyzed dogs. Test frequencies were 5, 7, 9, and 11 Hz with tidal volume kept constant at 2.5 ml/kg. During HFO application to the abdomen, we observed significantly higher arterial O2 partial pressure (P less than 0.05) at 5, 7, and 9 Hz and lower arterial CO2 partial pressure (P less than 0.05) at 7, 9, and 11 Hz than with rib cage or whole-body HFO. There was no significant difference in blood gases between rib cage and whole-body HFO. Thus, using blood gases as an index of ventilatory effectiveness, the present study showed that HFO applied at the abdomen was the most effective of the three kinds of body surface HFO. In comparison to rib cage or whole-body application, abdominal HFO was accompanied by substantial paradoxical movement of the diaphragm and rib cage. The associated lung distortion may result in pendelluft, which in turn may be the mechanism for increased ventilatory effectiveness with abdominal application of HFO.  相似文献   

11.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

12.
The efficiency of ventilation by high-frequency oscillation (HFO) applied to the thorax (external HFO) has been compared with that of HFO applied through a tracheal cannula (internal HFO) in a group of normal rats. Anesthetized, paralyzed, tracheotomized rats were placed in a whole-body plethysmograph. External HFO was achieved by varying the pressure surrounding the animal by means of a piston pump connected to the body plethysmograph; internal HFO was obtained in the same animals by connecting the pump to the tracheal cannula. Arterial CO2 and O2 partial pressures were measured in blood sampled from a carotid artery and were compared for external and internal HFO applied at 20 Hz with matched tidal volumes of 0.8, 1.4, 1.9, and 2.4 ml/kg. With increasing tidal volume, the mean arterial CO2 partial pressure decreased progressively from 68 to 30 Torr and was identical in the two modes of HFO; no difference was noted for the CO2 elimination or for the arterial O2 partial pressure. These results indicate that, in terms of gas exchange, external and internal HFO are equally efficient in normal rats.  相似文献   

13.
Although high frequency ventilation (HFV) is an effective mode of ventilation, there is limited information available in regard to lung dynamics during HFV. To improve the knowledge of lung function during HFV we have developed a novel lung imaging and analysis technique. The technique can determine complex lung motion information in vivo with a temporal resolution capable of observing HFV dynamics. Using high-speed synchrotron based phase contrast X-ray imaging and cross-correlation analysis, this method is capable of recording data in more than 60 independent regions across a preterm rabbit lung in excess of 300 frames per second (fps). This technique is utilised to determine regional intra-breath lung mechanics of preterm rabbit pups during HFV. Whilst ventilated at fixed pressures, each animal was ventilated at frequencies of 1, 3, 5 and 10 Hz. A 50% decrease in delivered tidal volume was measured at 10 Hz compared to 1 Hz, yet at the higher frequency a 500% increase in minute activity was measured. Additionally, HFV induced greater homogeneity of lung expansion activity suggesting this ventilation strategy potentially minimizes tissue damage and improves gas mixing. The development of this technique permits greater insight and further research into lung mechanics and may have implications for the improvement of ventilation strategies used to support severe pulmonary trauma and disease.  相似文献   

14.
This article concerns one of the most important problems of brain-computer interfaces (BCI) based on Steady State Visual Evoked Potentials (SSVEP), that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED) or were presented on a small number of subjects, or the tested frequency range did not cover a broad spectrum. Their results indicate a strong SSVEP response around 10 Hz, in the range 13–25 Hz, and at high frequencies in the band of 40–60 Hz. In the case of BCI interfaces, stimulation with frequencies from various ranges are used. The frequencies are often adapted for each user separately. The selection of these frequencies, however, was not yet justified in quantitative group-level study with proper statistical account for inter-subject variability. The aim of this study is to determine the SSVEP response curve, that is, the magnitude of the evoked signal as a function of frequency. The SSVEP response was induced in conditions as close as possible to the actual BCI system, using a wide range of frequencies (5–30 Hz, in step of 1 Hz). The data were obtained for 10 subjects. SSVEP curves for individual subjects and the population curve was determined. Statistical analysis were conducted both on the level of individual subjects and for the group. The main result of the study is the identification of the optimal range of frequencies, which is 12–18 Hz, for the registration of SSVEP phenomena. The applied criterion of optimality was: to find the largest contiguous range of frequencies yielding the strong and constant-level SSVEP response.  相似文献   

15.
We measured respiratory input impedance (1-25 Hz) in mice and obtained parameters for airway and tissue mechanics by model fitting. Lung volume was varied by inflating to airway opening pressure (Pao) between 0 and 20 cm H2O. The expected pattern of changes in respiratory mechanics with increasing lung volume was seen: a progressive fall in airway resistance and increases in the coefficients of tissue damping and elastance. A surprising pattern was seen in hysteresivity (eta), with a plateau at low lung volumes (Pao < 10 cm H2O), a sharp fall occurring between 10 and 15 cm H2O, and eta approaching a second (lower) plateau at higher lung volumes. Studies designed to elucidate the mechanism(s) behind this behavior revealed that this was not due to chest wall properties, differences in volume history at low lung volume, time dependence of volume recruitment, or surface-acting forces. Our data are consistent with the notion that at low lung volumes the mechanics of the tissue matrix determine eta, whereas at high lung volumes the properties of individual fibers (collagen) become more important.  相似文献   

16.
A single bifurcation with adjustable branch compliances, resistances and inertances was used to study the generation of pendelluft flows during ventilation at tidal volumes of 5-15 ml and frequencies of 6-26 Hz, corresponding to parent branch Reynolds numbers of 400-8000 and Womersley parameter values of 12-25. Pendelluft was quantified by the ratio of tidal volume sum in sibling branches to tidal volume in the parent branch. This tidal volume fraction being greater than one in all experiments where an asymmetry in branch mechanics was imposed, indicated that some degree of pendelluft was always present. Asymmetries in compliance and in inertance produced much greater pendelluft than an asymmetry in resistance. The largest tidal volume fraction, equal to 2.75, was recorded when inertance in both sibling branches was high, resistance was low, and compliances differed by a factor of five. Tidal volume fraction always peaked at an optimal frequency between 12-24 Hz, similar to the frequencies at which physiologic transport optima have previously been observed.  相似文献   

17.
A method for obtaining a continuous estimate of alveolar pressure (PAlv) during periodic flow is described; it was developed to improve the precision of measurements of airway and respiratory tissue impedance using the improved resolution of relatively high-frequency (approximately 5 Hz) singlas. The respiratory system was modulated with a piston pump, and lung volume and the volume change due to compression and expansion of alveolar gas were measured plethysmorgraphically; these signals and an analog divider were used to obtain a continuous solution of Boyle's law during flow. The plethysmorgraph was of the "flow" type; with it volume changes at frequencies up to 10 Hz and with rates of change up to 6 l/s were measured without amplitude or phase distortion. The method permits control of frequency and flow amplitude during PAlv measurement and calibration of PAlv in the absence of an active chest wall. However, it is technically complex.  相似文献   

18.
Mean alveolar pressure may exceed mean airway pressure during high-frequency oscillations (HFO). To assess the magnitude of this effect and its regional heterogeneity, we studied six excised dog lungs during HFO [frequency (f) 2-32 Hz; tidal volume (VT) 5-80 ml] at transpulmonary pressures (PL) of 6, 10, and 25 cmH2O. We measured mean pressure at the airway opening (Pao), trachea (Ptr), and four alveolar locations (PA) using alveolar capsules. Pao was measured at the oscillator pump, wherein the peak dynamic head was less than 0.2 cmH2O. Since the dynamic head was negligible here, and since these were excised lungs, Pao thus represented true applied transpulmonary pressure. Ptr increasingly underestimated Pao as f and VT increased, with Pao - Ptr approaching 8 cmH2O. PA (averaged over all locations) and Pao were nearly equal at all PL's, f's, and VT's, except at PL of 6, f 32 Hz, and VT 80 ml, where (PA - Pao) was 3 cmH2O. Remarkably, mean pressure in the base exceeded that in the apex increasingly as f and VT increased, the difference approaching 3 cmH2O at high f and VT. We conclude that, although global alveolar overdistension assessed by PA - Pao is small during HFO under these conditions, larger regional heterogeneity in PA's exists that may be a consequence of airway branching angle asymmetry and/or regional flow distribution.  相似文献   

19.
The major goal of this study was to compare gas exchange, tidal volume (VT), and dynamic lung pressures resulting from high-frequency airway oscillation (HFAO) with the corresponding effects in high-frequency chest wall oscillation (HFCWO). Eight anesthetized paralyzed dogs were maintained eucapnic with HFAO and HFCWO at frequencies ranging from 1 to 16 Hz in the former and 0.5 to 8 Hz in the latter. Tracheal (delta Ptr) and esophageal (delta Pes) pressure swings, VT, and arterial blood gases were measured in addition to respiratory impedance and static pressure-volume curves. Mean positive pressure (25-30 cmH2O) in the chest cuff associated with HFCWO generation decreased lung volume by approximately 200 ml and increased pulmonary impedance significantly. Aside from this decrease in functional residual capacity (FRC), no change in lung volume occurred as a result of dynamic factors during the course of HFCWO application. With HFAO, a small degree of hyperinflation occurred only at 16 Hz. Arterial PO2 decreased by 5 Torr on average during HFCWO. VT decreased with increasing frequency in both cases, but VT during HFCWO was smaller over the range of frequencies compared with HFAO. delta Pes and delta Ptr between 1 and 8 Hz were lower than the corresponding pressure swings obtained with conventional mechanical ventilation (CMV) applied at 0.25 Hz. delta Pes was minimized at 1 Hz during HFCWO; however, delta Ptr decreased continuously with decreasing frequency and, below 2 Hz, became progressively smaller than the corresponding values obtained with HFAO and CMV.  相似文献   

20.
The frequency dependence of respiratory impedance (Zrs) from 0.125 to 4 Hz (Hantos et al., J. Appl. Physiol. 60: 123-132, 1986) may reflect inhomogeneous parallel time constants or the inherent viscoelastic properties of the respiratory tissues. However, studies on the lung alone or chest wall alone indicate that their impedance features are also dependent on the tidal volumes (VT) of the forced oscillations. The goals of this study were 1) to identify how total Zrs at lower frequencies measured with random noise (RN) compared with that measure with larger VT, 2) to identify how Zrs measured with RN is affected by bronchoconstriction, and 3) to identify the impact of using linear models for analyzing such data. We measured Zrs in six healthy dogs by use of a RN technique from 0.125 to 4 Hz or with a ventilator from 0.125 to 0.75 Hz with VT from 50 to 250 ml. Then methacholine was administered and the RN was repeated. Two linear models were fit to each separate set of data. Both models assume uniform airways leading to viscoelastic tissues. For healthy dogs, the respiratory resistance (Rrs) decreased with frequency, with most of the decrease occurring from 0.125 to 0.375 Hz. Significant VT dependence of Rrs was seen only at these lower frequencies, with Rrs higher as VT decreased. The respiratory compliance (Crs) was dependent on VT in a similar fashion at all frequencies, with Crs decreasing as VT decreased. Both linear models fit the data well at all VT, but the viscoelastic parameters of each model were very sensitive to VT. After methacholine, the minimum Rrs increased as did the total drop with frequency. Nevertheless the same models fit the data well, and both the airways and tissue parameters were altered after methacholine. We conclude that inferences based only on low-frequency Zrs data are problematic because of the effects of VT on such data (and subsequent linear modeling of it) and the apparent inability of such data to differentiate parallel inhomogeneities from normal viscoelastic properties of the respiratory tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号