首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two dopamine receptors: biochemistry, physiology and pharmacology   总被引:34,自引:0,他引:34  
J C Stoof  J W Kebabian 《Life sciences》1984,35(23):2281-2296
In 1979, two categories of dopamine (DA) receptors (designated as D-1 and D-2) were identified on the basis of the ability of a limited number of agonists and antagonists to discriminate between these two entities. In the past 5 years agonists and antagonists selective for each category of receptor have been identified. Using these selective drugs it has been possible to attribute the effects of DA upon physiological and biochemical processes to the stimulation of either a D-1 or a D-2 receptor. Thus, DA-induced enhancement of both hormone release from bovine parathyroid gland and firing of neurosecretory cells in the CNS of Lymnaea stagnalis has been attributed to stimulation of a D-1 receptor. Likewise, the DA-induced inhibition of the release of prolactin and alpha-MSH from the pituitary gland, as well as of acetylcholine, DA and beta-endorphin from brain, the DA-induced inhibition of chemo-sensory discharge in rabbit carotid body and the DA-induced hyperpolarization of neurosecretory cells in the CNS of Lymnaea stagnalis have been attributed to stimulation of a D-2 receptor. Independently two categories of DA receptors (designated as DA-1 and DA-2) were identified in the cardiovascular system. Stimulation of a DA-1 receptor increases the vascular cyclic AMP content and causes a relaxation of vascular smooth muscle in renal blood vessels, whereas stimulation of a DA-2 receptor inhibits the release of norepinephrine from certain postganglionic sympathetic neurons. Recent studies with the newly developed drugs discriminating between D-1 and D-2 receptors suggest however that the independently developed schemata for classification of dopamine receptors in either the central nervous and endocrine systems or the cardiovascular system are similar although maybe not completely identical.  相似文献   

2.
3.
It is controversial whether dopamine (DA) is a peripheral neurotransmitter in the cardiovascular/renal system. The endogenous concentration of DA in the heart and blood vessels is generally only a fraction (5%) of that of norepinephrine (NE). With perhaps the exception of the kidney, the majority of the evidence suggests a precursor role for this amine rather than that of a neurotransmitter. The main weakness of arguments favoring DA as a vascular neurotransmitter is relative lack of data showing selective DA release and lack of effects of selective DA antagonists on neural stimulation. However, DA receptors have been characterized in cardiovascular tissues and are of two types: DA1 receptors located on vascular smooth muscle (postjunctional), which appear to mediate relaxation of the muscle, and DA2 receptors located on sympathetic nerves (pejunctional), which inhibit NE release. These receptors are interesting and potential target sites for novel cardiovascular drug action for the treatment of hypertension and renal ischemia. Moreover, selective DA receptor agonists will be important tools in understanding the role of DA receptors in normal and disease states.  相似文献   

4.
《Journal of Physiology》2013,107(6):503-509
The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.  相似文献   

5.
(E)-N-(3-bromoprop-2-enyl)-2beta-carbomethoxy-3beta-4'-tolyl -nortropane or PE2Br, an analogue of cocaine was labelled with the positron emitter 76Br (T1/2=16 h) for pharmacological evaluation in the rat and PET investigation in the monkey. [76Br]PE2Br was obtained by electrophilic substitution from the tributylstannyl precursor with radiochemical yield of 80%. In vivo biodistribution studies of [76Br]PE2Br (20 MBq/nmol) in rats showed a high uptake in the striatum (2.2% ID/g tissue at 15 min p.i.). The striatum to cerebellum radioactivity ratio was 6 at 1 hour p.i. Striatal uptake of [76Br]PE2Br was almost completely prevented by pretreatment with GBR 12909, but citalopram and maprotiline had no effect, confirming the selectivity of the radioligand for the dopamine transporter. PET imaging of the biodistribution of [76Br]PE2Br in the baboon demonstrated rapid and high uptake in the brain (5% ID at 3 min p.i.). The striatal radioactivity concentration reached a plateau at 20 min p.i. (7% ID/100 mL). The uptake in the cortex and cerebellum was very low. A significantly higher uptake in the thalamus was observed. At 1h p.i., the striatum to cerebellum ratio and thalamus to cerebellum ratio were 8 and 1.9 respectively. In competition experiments the radioactivity in the striatum and the thalamus was displaced by 5 mg/kgof cocaine and 5 mg/kg of GBR 12909, but citalopram and maprotiline had no effect. These results showed that [76Br]PE2Br is in vivo a potent and selective radioligand suitable for PET imagingof the dopamine transporter.  相似文献   

6.
7.
8.
Chemistry and biochemistry of magnesium   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
11.
(S)-5-bromo-N-[(1-cyclopropylmethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxybenzamide (4) has pico-molar in vitro binding affinity to D(2) receptor (K(i) (D(2))=0.003 nM) with lower affinity to D(3) receptor (K(i) (D(3))=0.22 nM). In this study, we describe radiosynthesis of [(11)C]4 and evaluation of its binding characteristics in post-mortem human brain autoradiography and with PET in cynomolgus monkeys. The (11)C labelled 4 was synthesized by using [(11)C]methyltriflate in a methylation reaction with its phenolic precursor with good incorporation yield (64+/-11%, DCY) and high specific radioactivity >370 GBq/micromol (>10,000 Ci/mmol). In post-mortem human brain autoradiography [(11)C]4 exhibited high specific binding in brain regions enriched with dopamine D(2)/D(3) receptors and low level of non-specific binding. In cynomolgus monkeys [(11)C]4 exhibited high brain uptake reaching 4.4% ID at 7.5 min. The binding in the extrastriatal low density D(2)-receptor regions; thalamus and frontal, parietal, temporal, and occipital cortex, was clearly visible. Pre-treatment with raclopride (1 mg/kg as tartrate) caused high reduction of binding in extrastriatal regions, including cerebellum. [(11)C]4 is a promising radioligand for imaging D(2) receptors in low density regions in brain.  相似文献   

12.
13.
There is great interest in the application of positron labeled ligands to map the dopamine receptor in vivo. A series of fluorine-18-labeled N-alkyl and N-fluoroalkyl spiroperidol (SP) derivatives N-methyl[18F]SP; N-ethyl[18F]SP; N-(2-[18F]fluoroethyl)SP; N-propyl[18F]SP; N-(3-[18F]fluoropropyl)SP; N-(3-fluoropropyl) [18F]SP; N-(2-[18F]fluoropropyl)SP; N-(2-[18F]fluorobutyl)SP; N-(2-[18F]fluoropentyl)SP; and N-(2-[18F]fluorohexyl) SP were synthesized. The lipophilicity of these ligands (log octanol/water partition coefficient) varies from 2.67 to 5.56 and the initial brain uptake in rats, measured at 2 min, was greatest with the methyl, ethyl, propyl, fluoroethyl, and fluoropropyl derivatives. The highest striatum/cerebellum values 1 h after administration were obtained with the N-methyl, N-propyl, and N-3-fluoropropyl derivatives, while that of N-2-fluoroethyl showed the greatest uptake of total activity in the brain at this time. The uptake of all these ligands in the striatum could be blocked by cold SP showing the striatal uptake to be by the dopamine receptors.  相似文献   

14.
Chemistry and biochemistry of palm oil   总被引:3,自引:0,他引:3  
  相似文献   

15.
16.
Alpha1 and alpha2 adrenergic receptors have previously been demonstrated in rat liver membranes by competition curves of [3H]dihydroergocryptine ([3H]DHE) with the alpha1 selective antagonist prazosin (B.B. Hoffman, D. Mullikin-Kilpatrick and R.J. Lefkowitz, J. Biol. Chem. 255:4645–4652, 1980). The present studies have utilized the radioligands [3H]prazosin and [3H]yohimbine to further define alpha receptors in rat liver membranes. [3H]Prazosin was found to label alpha1 receptors whereas [3H]yohimbine labelled alpha2 receptors. The proportion of alpha1 and alpha2 receptors determined directly with these radioligands (79% and 20% respectively) was in good agreement with the proportions determined previously with [3H]DHE. Guanine nucleotides were found to reduce the affinity of the agonist epinephrine at the alpha2 sites labelled by [3H]yohimbine but not at the alpha1 sites labelled by [3H]prazosin. These results have implications for the interpretation of agonist interactions with alpha receptors in liver membranes.  相似文献   

17.
Benzamide derivatives as radiotracers have played an important role in diagnosing malfunction in dopaminergic neurotransmission. A variety of halogenated and two unsubstituted benzamide derivatives were synthesised and their in vitro affinities to dopaminergic, serotonergic and adrenergic receptors and their lipophilicities were determined. As references IBZM (3), raclopride (4) and FLB457 (5) were tested as well. The two iodinated compounds NAE (27) and NADE (28) displayed K(i) values of 0.68 and 14 nM for the D(2) receptor. The well-established radiotracers FP (1) and DMFP (2) showed affinities in the same range as did the brominated compounds NABrE (29) and NABrDE (30). The log D(7.4) values of 2.91 for NAE (27) and of 2.81 for NADE (28) are in the range of those found for IBZM (3), FP (1) and DMFP (2). These facts allow to expect good properties for the two iodinated compounds NAE (27) and NADE (28) regarding in vivo imaging with SPECT.  相似文献   

18.
Affinities of dopamine (DA) analogs to both granular and plasma membrane uptake transporters were measured in vitro by inhibition of [3H]DA uptake in bovine chromaffin granule ghosts and C6 glial cells transfected with cDNA for the rat presynaptic dopamine transporter, respectively. Five amines were studied: DA, 6-fluorodopamine (6FDA), m-tyramine (MTA), 6-fluoro-m-tyramine (6FMTA), and β-fluoromethylene-m-tyramine (FMMTA). Direct uptake of 18F labeled 6FDA and 6FMTA was also measured in the chromaffin granule system and compared with [3H]DA uptake. Results show that the transporter affinities of 6FDA and MTA were similar to that of DA in both transport systems while affinities of 6FMTA and FMMTA were lower. Furthermore while the direct uptake of DA and FDA in chromaffin granules were essentially identical and significantly reserpine-inhibitable, the direct uptake of 6FMTA was about 15-fold less and only minimally sensitive to reserpine pretreatment. Thus, although vesicular protection and reuptake may influence the turnover of FDA in 6-fluoroDOPA studies, they are unlikely to be important determinants of the kinetics of the slowly clearing components in studies with either 6-fluoro-m-tyrosine (6FMT) or 6-fluoro-β- fluoro-methylene-m-tyrosine (6FFMMT), the bioprecursors of 6FMTA and 6-fluoro-FMMTA, respectively. These results are consistent with the finding that the longterm component in 6FMT PET studies is 6-fluoro-hydroxyphenylacetic acid (6FHPAC), which can be explained by the lack of vesicular protection of 6FMTA from MAO oxidation.  相似文献   

19.
20.
《Free radical research》2013,47(10):1098-1124
Abstract

Oxidative stress and resulting lipid peroxidation is involved in various and numerous pathological states including inflammation, atherosclerosis, neurodegenerative diseases and cancer. This review is focused on recent advances concerning the formation, metabolism and reactivity towards macromolecules of lipid peroxidation breakdown products, some of which being considered as ‘second messengers’ of oxidative stress. This review relates also new advances regarding apoptosis induction, survival/proliferation processes and autophagy regulated by 4-hydroxynonenal, a major product of omega-6 fatty acid peroxidation, in relationship with detoxication mechanisms. The use of these lipid peroxidation products as oxidative stress/lipid peroxidation biomarkers is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号