首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our investigations indicate the existence of binding sites for [3H]SCH23390 on crude membrane preparations in the anterior and posterior gills of the Chinese crab, Eriocheir sinensis acclimated to freshwater (FW) or seawater (SW). Maximum specific binding in the posterior gills is always higher than in the anterior gills, independent of saline acclimation. Kd values are similar in the two regions, suggesting the same affinity of both types of gills for the ligand, either from FW or from SW crabs.  相似文献   

2.
Activation of glycolysis by insulin in cultured adult rat hepatocytes is accompanied by an activation of phosphofructokinase 2 (PFK 2). PFK 2 activation might be caused by insulin-dependent changes of (a) metabolite levels, (b) basal and (c) Br8cAMP-stimulated cAMP-dependent protein kinase activity; this problem was investigated. 1. Cells cultured with 0.1 nM insulin for 48 h exhibited a low glycolytic rate and low fructose 2,6-bisphosphate [Fru(2,6)P2] levels. Addition of insulin increased Fru(2,6)P2 and Fru(1,6)P2 levels sequentially which points to PFK 2 as first target enzyme of insulin action. 2. Concentrations of Glc6P, Fru6P, phosphoenolpyruvate, glycerol 3-phosphate and citrate, which modulate PFK 2/fructose 2,6-bisphosphatase 2 activity, were not altered by insulin. 3. Activation of PFK 2 by insulin occurred without changes in the levels of total and protein-bound cAMP. Bound cAMP amounted to about 14% of total cAMP. 4. Insulin neither decreased the basal dissociation state of the cAMP-dependent protein kinase nor lowered the sensitivity of the kinase towards cAMP in cell extracts. 5. Addition of the phosphodiesterase-resistant Br8cAMP to the cultures increased cAMP levels 3-4-fold, elevated the protein kinase activity ratio from 0.14 to 0.6 and decreased the Fru(2,6)P2 level and the rate of glycolysis. When Br8cAMP and insulin were given together, insulin was capable of counteracting Br8cAMP in that it activated glycolysis and PFK 2 and elevated the Fru(2,6)P2 level; however, it did not decrease the elevated protein kinase activity ratio. It is concluded that insulin presumably does not activate PFK 2 through changes in cAMP and effector levels or through inhibition of cAMP-dependent protein kinase dissociation. The data support the hypothesis that insulin may act via activation of PFK 2 phosphatase.  相似文献   

3.
Activation of glycolysis by insulin in cultured rat hepatocytes is preceded by an activation of phosphofructokinase 2 (PFK 2) and subsequent rise of the fructose 2,6-bisphosphate [Fru(2,6)P2] level. Extracellular addition of ATP or puromycin prevented the hormonal effect on glycolysis. The mechanism through which the purines abolished glycolytic stimulation was investigated. 1. 50 microM ATP completely prevented the 3-5-fold insulin-dependent increase of glycolysis, irrespective of whether the cells initially possessed a low or a high Fru(2,6)P2 content. 50 microM puromycin prevented the stimulation of glycolysis by insulin only in cells whose initial Fru(2,6)P2 levels were low and had to be increased by insulin prior to the increase in glycolysis. It did not antagonize the action of insulin cells with initial high Fru(2,6)P2 content. 2. ATP exerted effects on its own; it decreased initially high Fru(2,6)P2 levels by 95% within 10 min and decreased the basal glycolytic rate by 60%. Half-maximal effects on the Fru(2,6)P2 level were obtained with about 25 microM ATP or 15 microM adenosine 5'[beta, gamma-methylene]triphosphate. ADP and adenosine-5-[gamma-thio]triphosphate were as effective as ATP, whereas 100 microM adenosine 5'[alpha, beta-methylene]triphosphate elicited no effect. Puromycin neither decreased high Fru(2,6)P2 levels nor inhibited basal glycolysis. 3. Extracellular ATP (100 microM) led to inhibition of the active form of PFK 2. Intracellular levels of Glc6P, citrate, ATP, ADP and AMP were increased by extracellular ATP, the phosphoenolpyruvate content was decreased, Fru6P and glycerol 3-phosphate levels stayed constant. Puromycin did not inhibit PFK 2. 4. Both puromycin and ATP prevented the insulin-dependent rise of the Fru(2,6)P2 level, they abolished the activation of PFK 2 by the hormone. Puromycin did not block the accumulation of Fru(2,6)P2 provoked by glucose addition; ATP also antagonized the glucose-dependent increase. 5. 100 microM ATP elevated the cAMP-dependent protein kinase activity ratio from 0.1 to 0.38 and increased the level of inositol trisphosphate by 16-fold within 5 min, whereas puromycin was without effect on either level. It is concluded that the two purines block the insulin effect on glycolysis by preventing the hormone increasing the Fru(2,6)P2 level. The mode of action, however, seems to be different: ATP antagonizes insulin action in that it leads to increased inhibition of PFK 2 whereas puromycin prevents the activation of PFK 2 by insulin.  相似文献   

4.
Intracellular radioactivity following incubation of HTC or RLC cells in [3H]cAMP exceeds that following incubation in either [3H]mono- or dibutyryl cAMP by 30-fold, yet little [3H]cAMP is found within the cells. Even at early times (30 min) the label derived from [3H]cAMP is predominantly found in ADP or ATP, suggesting it mostly enters the cell as the nucleoside. Significant intracellular concentrations of monobutyryl cAMP (2–10 μm) result from incubation of both cell lines in either N6 mono- or dibutyryl cAMP. A very small percentage of this label is in cAMP, and within 2 h of incubation > 65% of the label is again found in ADP or ATP.Liver cytosol contains three major cAMP-dependent protein kinases, designated A, B, and C, as resolved by DEAE-Sephadex chromatography. cAMP is the most effective in vitro activator (10- to 16-fold stimulation) of kinases A and B, the preponderant forms, in the order cAMP > N6 monobutyryl cAMP ? dibutyryl cAMP. Kinase C, a minor fraction, was stimulated two to threefold with the order cAMP ≥ N6 monobutyryl cAMP > dibutyryl cAMP. HTC and RLC cell cytosol protein kinase has Chromatographic and cyclic nucleotide activation properties similar to those of liver fraction C.The activation state of the protein kinases of HTC and RLC cells incubated in the various cyclic nucleotides was also studied. The ability of such nucleotides to occupy regulatory protein binding sites in intact cells (as determined by the inhibition of subsequent in vitro binding of [3H]cAMP) was of the order N6 monobutyryl cAMP > dibutyryl cAMP > cAMP > untreated cells. Correspondingly, the ratio of basal protein kinase activity in cyclic nucleotide treated:control cells was higher in cells incubated in monobutyryl cAMP > dibutyryl cAMP > cAMP. This in vivo activation suggests that little additional stimulation would be obtained by adding cAMP to extracts prepared from such cells. This activation can be expressed as the ratio ? cAMP: + cAMP (a ratio of 1 being maximal activation). The highest such ratio was seen in cells which had been incubated in monobutyryl cAMP > dibutyryl cAMP > cAMP > untreated cells. The studies indicate that all three cyclic nucleotides are capable of activating protein kinase in intact RLC and HTC cells; however the monobutyryl derivative is the most effective, and the degree of stimulation is greater in RLC than in HTC cells.RLC cell tyrosine aminotransferase activity is increased two to threefold by butyrylated cAMP derivatives (but not by cAMP) whereas the HTC cell enzyme is not induced. The rate of replication of both lines is unaltered by the butyrylated compounds.Since HTC and RLC cells accumulate and metabolize cAMP and its derivatives equally, and since they both contain a protein kinase with similar in vivo and in vitro activation properties, it is suggested that the effects of butyrylated cAMP derivatives on cell replication and tyrosine aminotransferase induction are mediated separately, either by distinct protein kinases, or at a point distal to protein kinase, or by a mechanism independent of protein kinase.  相似文献   

5.
The fatty acid composition of the different classes of phospholipids isolated from 10,000 g fractions of posterior and anterior gills of fresh water-acclimatized Chinese crabs (Enocheir sinensis) has been analysed by two-dimensional TLC and GLC. All the phospholipids, especially PE and DPG, contain large amounts of long chain, polyunsaturated fatty acids. In PC and PE of both the anterior and posterior gills, polyenic fatty acids (particularly the ω-3-acid family) were found to be mainly incorporated in the 2-positon of the glycerol molecule. The ω-3-fatty acids/ω-6-fatty acids ratio in each class of phospholipids is higher in the posterior gills than in the anterior ones. The sum of polyunsaturated fatty acids and the unsaturation index of DPG are more important in the posterior gills than in the anterior ones. It is suggested that negatively charged unsaturated DPG and that the contrast of activities of ω-6- and ω-3-acids found in phospholipids provide a suitable lipid environment for optimal activity of the transport mechanisms at work in posterior gills of the Chinese crab.  相似文献   

6.
The effect of water salinity and ions on metallothionein-like proteins (MTLP) concentration was evaluated in the blue crab Callinectes sapidus. MTLP concentration was measured in tissues (hepatopancreas and gills) of crabs acclimated to salinity 30 ppt and abruptly subjected to a hypo-osmotic shock (salinity 2 ppt). It was also measured in isolated gills (anterior and posterior) of crabs acclimated to salinity 30 ppt. Gills were perfused with and incubated in an isosmotic saline solution (ISS) or perfused with ISS and incubated in a hypo-osmotic saline solution (HSS). The effect of each single water ion on gill MTLP concentration was also analyzed in isolated and perfused gills through experiments of ion substitution in the incubation medium. In vivo, MTLP concentration was higher in hepatopancreas than in gills, being not affected by the hypo-osmotic shock. However, MTLP concentration in posterior and anterior gills significantly increased after 2 and 24 h of hypo-osmotic shock, respectively. In vitro, it was also increased when anterior and posterior gills were perfused with ISS and incubated in HSS. In isolated and perfused posterior gills, MTLP concentration was inversely correlated with the calcium concentration in the ISS used to incubate gills. Together, these findings indicate that an increased gill MTLP concentration in low salinity is an adaptive response of the blue crab C. sapidus to the hypo-osmotic stress. This response is mediated, at least in part, by the calcium concentration in the gill bath medium. The data also suggest that the trigger for this increase is purely branchial and not systemic.  相似文献   

7.
  • 1.1. The movements of Cl−1 have been studied in the so-called anterior and posterior gills of E. sinensis using radioactive 36Cl−1.
  • 2.2. The anterior gills hardly show any significant movements of Cl−1. They thus have a very low (if any) permeability to that ion. On the contrary, the posterior gills show both passive fluxes and an active inward movement of Cl−1.
  • 3.3. The Cl−1 influx in the posterior gills is largely sensitive to the amount of K+ in the perfusion saline.
  相似文献   

8.
Using the perfusion method, we compared cadmium accumulation and influx across the gills of the euryhaline Chinese mitten crab Eriocheir sinensis, exposed to 4.8 microM cadmium in the incubation medium (OUT). Cadmium influx was not observed across posterior gills while it ranged from 0.15 to 6.82 nmol Cd g(-1) gill w.w. h(-1) across anterior ones. For these respiratory gills, a strong increase (40 times) was observed when calcium was removed in both incubation and perfusion media while the lack of sodium in the perfusion medium resulted in a 46 times decrease. For crabs acclimated 15 days to artificial seawater, cadmium influx across anterior gills showed a 21 times decrease when compared with freshwater acclimated ones. On the other hand, after 3 h of perfusion, we detected cadmium accumulation in both types of gills, ranging from 3.8 to 68 nmol Cd g(-1) gill w.w. in anterior gills and from 2.1 to 39 nmol Cd g(-1) gill w.w. in posterior ones. Such accumulations represent between 61.3 and 100% of the total uptake of cadmium through the gills. From these results, we suggest that cadmium can penetrate more easily into the hemolymph space through the 'respiratory' type epithelium present in the anterior gills but absent in the posterior ones. This metal uptake is likely to occur at least in part through the same pathways as calcium. On the contrary, cadmium seems to be sequestered inside the posterior gills, perhaps in the cuticle of the salt-transporting type epithelium.  相似文献   

9.
Paz N  Xu DP  Black CC 《Plant physiology》1985,79(4):1133-1136
The fructose 2,6-bisphosphate (Fru 2,6-P2) content of pea, Pisum sativum, roots and leaves were measured following flooding with water and found to change in times of minutes and to exhibit oscillatory-type changes. Each organ changes its Fru 2,6-P2 content in a unique pattern in response to environmental disturbances such as flooding or light. For example, when roots of intact illuminated pea plants are flooded, roots decrease their Fru 2,6-P2 content while simultaneously leaves increase their Fru 2,6-P2 content; but both organs exhibit oscillatory-type patterns within flooding time of about 30 minutes. Half-change times can be as rapid as 2 to 3 minutes. The endogenous extractable activity of the root pyrophosphate-dependent phosphofructokinase also exhibits an oscillatory pattern upon root immersion slightly after Fru 2,6-P2 changes occur. We postulate from these results that Fru 2,6-P2 is a primary signal molecule which enables plants to regulate their metabolism to cope with changing environments.  相似文献   

10.
The objective of this work was to evaluate mechanisms of microcystin toxicity on crustacean species. Adult male crabs of Chasmagnathus granulatus (13.97+/-0.35 g) acclimated to low salinity (2 per thousand ) were injected with saline (control) or Microcystis aeruginosa aqueous extract (39.2 microg/l) at 24 h intervals for 48 h. After the exposure period, the anterior and posterior gills were dissected, measuring Na(+),K(+)-ATPase and glutathione-S-transferase (GST) activity. Total oxyradical scavenging capacity (TOSC) and lipid peroxides (LPO) content were also determined. Na(+),K(+)-ATPase activity in anterior gills was significantly lower in crabs injected with toxin than in control crabs, while no significant difference in the enzyme activity was detected in posterior gills. Both sodium and chloride concentration in the hemolymph were not affected by toxin exposure. Significant changes in GST activity were detected in posterior gills, with higher values being observed in the toxin-injected crabs. Crabs exposed to microcystin also showed a significant increase in the TOSC value against peroxyl radicals, for both anterior and posterior gills. Lipid peroxides level did not change in both gill types after exposure to the toxin. The increased levels of TOSC suggest the occurrence of a crab response against oxidative stress induced by toxin injection, which prevents lipid peroxidation.  相似文献   

11.
We studied the participation of carbonic anhydrase (CA), V-H(+)-ATPase, and Cl(-)/HCO3- exchanger in electrogenic ion absorption through the gills of Chasmagnathus granulatus. CA activity was measured in anterior gills and posterior gills after acclimation to 2 per thousand, 10 per thousand, 30 per thousand (about seawater), and 45 per thousand salinity. The highest CA specific activity was detected in the microsomal fraction in anterior gills, and in the cytosolic fraction, in posterior ones. Both fractions were strongly induced by decreasing salinity only in posterior gills. Perfusion of posterior gills from crabs acclimated to either 2 per thousand or 10 per thousand with acetazolamide inhibited CA activity almost completely. In posterior gills from crabs acclimated to 2 per thousand and perfused with 20 per thousand saline (iso-osmotic for these crabs), acetazolamide reduced transepithelial potential difference (V(te)) by 47%, further addition of ouabain enhanced the effect to 88%. Acetazolamide had no effect in the same gills perfused with 30 per thousand saline (iso-osmotic for seawater acclimated crabs). Bafilomycin A1 and SITS (inhibitors of V-H(+)-ATPase and Cl(-)/HCO3-) reduced V(te) by 15-16% in gills perfused with normal 20 per thousand saline, and by 77% and 45%, respectively when they were applied in Na-free 20 per thousand saline, suggesting the participation of those transporters and cytosolic CA in electrogenic ion absorption.  相似文献   

12.
The estuarine crab Neohelice granulata was exposed (96h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2ppt salinity, 1mg Cu/L; isosmotic crabs: 30ppt salinity, 5mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes observed suggest no impact in the overall tissue ATP production. Also, findings suggest that copper exposure would stimulate the pentose phosphate pathway to support the antioxidant system requirements. Although N. granulata is very tolerant to copper, acute exposure to this metal can disrupt the energy balance by affecting biochemical systems involved in carbohydrate metabolism.  相似文献   

13.
Yeast fructose-2,6-bisphosphate 6-phosphatase has been purified 7000-fold by heat treatment, poly(ethylene glycol) precipitation, ion-exchange chromatography with Q-Sepharose Fast Flow and Mono Q followed by affinity chromatography with concanavalin-A-Sepharose and gel filtration with Superose 12. The purified dimeric enzyme contains 1.5 mol zinc and 1.3 mol copper/mol subunit. It reacts with fructose 2,6-bisphosphate [Fru(2,6)P2] as well as with p-nitrophenyl phosphate (NpP) showing a pH optimum at pH 6-6.5 with Fru(2,6)P2 [Plankert, U., Purwin, C. & Holzer, H. (1988) FEBS Lett. 239, 69-72] and above pH 9.0 with NpP. The following observations suggest that activity with both substrates depends on the same protein. (a) During 7000-fold purification, the ratio of activity with NpP to that with Fru(2,6)P2 remained constant. (b) The time course of inactivation of enzyme activity in dilute solution at 30 degrees C is similar for both substrates. (c) At increasing temperatures, inactivation of enzyme activity measured with both substrates proceeds at nearly identical rates. (d) Activity with both substrates is found preferentially in the vacuoles. (e) Mutants defective in the nonspecific alkaline phosphatase coded by the PHO8 gene are also defective in Fru(2,6)P2 6-phosphatase activity. (f) A proteinase A mutant, defective in processing and activation of nonspecific alkaline phosphatase coded by the PHO8 gene, also fails to activate Fru(2,6)P2 6-phosphatase.  相似文献   

14.
Some kinetic properties of gill Na(+),K(+)-ATPase of the estuarine crab, Chasmagnathus granulata, and its involvement in osmotic adaptation were analyzed. Results suggest the presence of different Na(+),K(+)-ATPase isoforms in anterior and posterior gills. They have different affinities for Na(+), but similar affinity values for K(+), Mg(2+), ATP and similar enzymatic profiles as a function of temperature of the incubation medium. Ouabain concentrations which inhibit 50% of enzyme activity were also similar in the two types of gills. Enzyme activity and affinity for Na(+) are higher in posterior gills than in anterior ones. Furthermore, affinities of Na(+),K(+)-ATPase of posterior gills for Na(+) and K(+) were similar to or higher than those of gills or other structures involved in the osmoregulation in several euryaline decapod crustaceans. Acclimation to low salinity was related to a significant increase in the maximum Na(+), K(+)-ATPase activity, mainly in posterior gills. On the other hand, crab acclimation to high salinity induced a significant decrease in maximum enzyme activity, both in anterior and posterior gills. These results are in accordance to the osmoregulatory performance showed by C. granulata in diluted media, and point out the major role of posterior gills in the osmoregulation of this species.  相似文献   

15.
Fructose 2,6-bisphosphate is a powerful activator of yeast phosphofructokinase when assayed at pH levels of ≥7.0. Half maximal stimulation of enzyme activity occurs at 10?7 M levels of Fru 2,6-P2 concentration. This stimulating effect by Fru 2,6-P2 can be synergistic to that exerted by AMP in counteracting the inhibition of phosphofructokinase activity by ATP. The affinity (S0.5) of the yeast enzyme to fructose 6-phosphate changes from 1.5 mM in the absence of Fru 2,6-P2 to 40 μM in its presence.  相似文献   

16.
Amino and carboxyl termini of the bifunctional enzyme Fru 6-P, 2-kinase:Fru 2,6-bisphosphatase regulate the relative activities of the kinase/phosphatase. The N-terminus of the rat liver bifunctional enzyme is highly basic, containing a protein kinase A phosphorylation site that regulates these enzyme activities in a reciprocal manner. To determine the role of charged residues in the N-terminal peptide, mutant enzymes were constructed in which these residues were altered to residues carrying opposite charges, and the effect on the catalytic properties, thermal lability, and susceptibility to trypsin digestion and phosphorylation by protein kinase A was determined. Most of these mutations decreased k(cat)/K(ATP) and/or k(cat)/K(Fru) (6-P) of the kinase and increased k(cat)/K(Fru 2,6-P2) of the phosphatase. These mutant enzymes were more susceptible to trypsin digestion, phosphorylation by protein kinase A, and thermal inactivation. In general, the effect was greater with amino acid residues located more distant from the N-terminus. The resulting changes were not as large as observed with the phosphorylated enzyme. Mutation of Ser22 to Pro produced large changes in the kinetic properties comparable to those of phosphorylation, suggesting that the flexible region of the N-terminus containing five serines (Ser20 to S24) is essential for the enzyme activities. These results indicated that the charged residues as well as Ser20-Ser24 in the N-terminus of the liver Fru 6-P,2-kinase:Fru 2,6-Pase are essential in the allosteric regulation and probably involved in interactions with the catalytic domains that induce a conformation that has high Fru 6-P,2-kinase and low Fru 2,6-Pase activities. Any disruption of this N-terminal interaction results in inhibition of the kinase and activation of the phosphatase.  相似文献   

17.
Some glycolytic metabolites in the adductor muscle were measured after transfer of scallops from aerobic to anaerobic saltwater for 12 h. The level of octopine increased gradually during the initial 3 h incubation, and thereafter the level increased rapidly up to 12 h. The ATP level also did not show any significant change for the initial 3 h, and then decreased rapidly. The fructose 2,6-biphosphate (Fru 2,6-BP) level increased drastically during the initial 3 h incubation, but thereafter the level did not show any significant change up to 12 h. In the short-term effects of anaerobiosis for 90 min, the level of fructose 6-phosphate (Fru 6-P) increased just after transfer to anaerobiosis, and then its level decreased. In contrast, the fructose 1,6-biphosphate (Fru 1,6-BP) level increased greatly, at the time when both glucose 6-phosphate (Glc 6-P) and Fru 6-P decreased. The Fru 2,6-BP level did not any significant change during the initial 15 min incubation, but thereafter the level increased gradually up to 90 min. Scallop 6-phosphofructo 1-kinase (EC 2.7.1.11) (PFK1) was strongly activated by 1 microM Fru 2,6-BP when 0.2 mM Fru 6-P was used as a substrate, but the activity was not affected at 5 mM Fru 6-P. In view of these results, the regulation mechanism of glycolysis is discussed.  相似文献   

18.
In ripening banana (Musa sp. [AAA group, Cavendish subgroup] cv Valery) fruit, the concentration of glycolytic intermediates increased in response to the rapid conversion of starch to sugars and CO2. Glucose 6-phosphate (G-6-P), fructose 6-phosphate (Fru 6-P), and pyruvate (Pyr) levels changed in synchrony, increasing to a maximum one day past the peak in ethylene synthesis and declining rapidly thereafter. Fructose 1,6-bisphosphate (Fru 1,6-P2) and phosphoenolpyruvate (PEP) levels underwent changes dissimilar to those of G 6-P, Fru 6-P, and Pyr, indicating that carbon was regulated at the PEP/Pyr and Fru 6-P/Fru 1,6-P2 interconversion sites. During the climacteric respiratory rise, gluconeogenic carbon flux increased 50- to 100-fold while glycolytic carbon flux increased only 4- to 5-fold. After the climacteric peak in CO2 production, gluconeogenic carbon flux dropped dramatically while glycolytic carbon flux remained elevated. The steady-state fructose 2,6-bisphosphate (Fru 2,6-P2) concentration decreased to ½ that of preclimacteric fruit during the period coinciding with the rapid increase in gluconeogenesis. Fru 2,6-P2 concentration increased thereafter as glycolytic carbon flux increased relative to gluconeogenic carbon flux. It appears likely that the initial increase in respiration in ripening banana fruit is due to the rapid influx of carbon into the cytosol as starch is degraded. As starch reserves are depleted and the levels of intermediates decline, the continued enhancement of respiration may, in part, be maintained by an increased steady-state Fru 2,6-P2 concentration acting to promote glycolytic carbon flux at the step responsible for the interconversion of Fru 6-P and Fru 1,6-P2.  相似文献   

19.
The content of fructose 2,6-bisphosphate (Fru(2,6)P2) and lactate production in triamcinolone acetonide-treated rats thymocytes was studied. The effect in vitro of corticosterone and dexamethasone on normal thymocytes was also examined. Glucocorticoids produced a marked decrease in Fru(2,5)P2 content and lactate production. The largest effect was observed with triamcinolone acetonide (7.5 mg per kg body weight), which after 20 h of treatment produced over 90% of inhibition. This change was accompanied by the decrease of both phosphofructokinase-1 and -2 activities and ATP levels, without modifications of hexoses phosphate content. The inhibitory actions of glucocorticoids were abolished by cycloheximide, an inhibitor of protein synthesis. Furthermore this drug, by itself, increased Fru(2,6)P2 content by more than 50% compared with the controls.  相似文献   

20.
Sulphite at concentrations from 0.05 to 5.0 mM was supplied to illuminated, detached poplar (Populus deltoides Bart. ex Marsh) leaves via the transpiration stream. The rate of CO2 fixation and partitioning of newly fixed carbon between sucrose and starch were measured and compared with the contents of selected phosphorylated intermediates, the contents of fructose-2,6-bisphosphate (Fru2,6BP) and the activation of sucrose-phosphate synthase (SPS). Supplying leaves with 0.5 mM sulphite led to an increase in the sucrose/starch partitioning ratio without altering the rate of 14CO2 fixation. The increase in sucrose synthesis compared to starch synthesis was accompanied by relatively small changes of 3-phosphoglyceric acid (PGA), fructose-1,6-bisphosphate (Fru1,6BP), hexose phosphates (hexose-)), uridine 5'-diphosphoglucose (UDPGlc), an accumulation of triose phosphates (triose-P), an activation of SPS, and decreased Fru2,6BP contents. Supplying leaves with 1.0 mM sulphite decreased 14CO2 assimilation and increased partitioning of fixed carbon into starch. A selective inhibition of sucrose synthesis was accompanied by an accumulation of triose-P, Fru1,6BP, hexose-P, and a decrease of PGA contents. There was also a large increase of Fru2,6BP contents and a decline in the activation of SPS. It could be argued that sulphite affects the allocation of photosynthetic carbon to sucrose and that sulphite can inhibit photosynthesis via a selective inhibition of sucrose synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号