首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binding of an aldose reductase inhibitor to renal glomeruli   总被引:1,自引:0,他引:1  
The aldose reductase inhibitor Sorbinil affects several membrane-associated complexes including Na/K-ATPase activity, transport processes, and impulse propagation. These considerations, coupled with the drug's aromatic nature, suggested the possibility of direct interaction with cell membranes. In the present study, binding of [3H]-Sorbinil to isolated glomeruli was demonstrated. Binding is dose-dependent and saturable, and can be inhibited by increasing concentrations of unlabeled Sorbinil. These results may help explain the compound's diverse effects on membrane-associated processes.  相似文献   

2.
3.
M Kurono  I Fujiwara  K Yoshida 《Biochemistry》2001,40(28):8216-8226
Aldose reductase (AR) is an NADPH-dependent enzyme implicated in diabetic complications. AS-3201 [(R)-(-)-2-(4-bromo-2-fluorobenzyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-4-spiro-3'-pyrrolidine-1,2',3,5'-tetrone] is a structurally novel and potent ARI with an inhibitor constant (K(i) = 10(-)(10) M) 2000-fold lower than that of its optical antipode (S-isomer). To elucidate the inhibition modes and the stereochemical differences in their inhibitory potencies, we examined the interaction of these R- and S-isomers with AR under physiological conditions. Enzyme kinetic analysis, which was performed by using physiological substrates at 37 degrees C, showed that both isomers selectively act on the E-NADP(+) complex in both the forward and reverse reactions of AR. However, fluorometric titration analysis demonstrated that the affinities of the isomers for the E-NADP(+) complex are about the same as those for the E-NADPH complex and the apoenzyme. These results suggested that the selective binding to the E-NADP(+) complex arises from the predominance of this enzyme form during steady-state turnover rather than from binding specificity. Both the competition with a known active site-directed ARI and the protective effect on AR inactivation by N-bromosuccinimide showed that the isomers bind to the active site of the enzyme, but the thermodynamic parameters for the binding to AR indicated that additional hydrogen bonds and/or van der Waals interactions contribute to the energetic stabilization in the E-R-isomer complex. Molecular modeling, together with the deductions from spectroscopic studies, suggested that the succinimide ring and the 4-bromo-2-fluorobenzyl group of the R-isomer are optimally located for formation of a hydrogen-bonding network with AR, and that the latter benzyl group is also effective for the differentiation between AR and aldehyde reductase (a closely related enzyme).  相似文献   

4.
Characterization of aldose reductase and aldehyde reductase from rat testis   总被引:4,自引:0,他引:4  
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase, EC 1.1.1.21) and aldehyde reductase (alcohol:NADP+ oxidoreductase, EC 1.1.1.2) were purified to a homogeneity from rat testis. The molecular weights of aldose reductase and aldehyde reductase were estimated to be 38,000 and 41,000 by SDS-polyacrylamide gel electrophoresis, and the pI values of these enzymes were found to be 5.3 and 6.1 by chromatofocusing, respectively. Aldose reductase had activity for aldo-sugars such as xylose, glucose and galactose, whereas aldehyde reductase was virtually inactive for these aldo-sugars. The Km values of aldose reductase for aldo-sugars were relatively high. When a correction was made for the fraction of aldo-sugar present as the aldehyde form, which is the real substrate of the enzyme, the Km values were much lower. Aldose reductase utilized both NADPH and NADH as coenzyme, whereas aldehyde reductase utilized only NADPH. Aldose reductase was activated significantly by sulfate ion, while aldehyde reductase was little affected. Both enzymes were inhibited strongly by the known aldose reductase inhibitors. However, aldehyde reductase was in general less susceptible to these inhibitors when compared to aldose reductase. Both aldose reductase and aldehyde reductase treated with pyridoxal 5-phosphate have lost the susceptibility to aldose reductase inhibitor, suggesting that in these two enzymes aldose reductase inhibitor interacts with a lysine residue.  相似文献   

5.
The aldose reductase (AR) inhibitor, 8-hydroxydaidzein, was isolated and identified from a methanolic extract of okara (soybean pulp) fermented with the fungal strain, Aspergillus sp. HK-388. 8-Hydroxydaidzein showed non-competitive inhibition of human recombinant AR with respect to DL-glyceraldehyde, its Ki value being evaluated as 7.0 microM.  相似文献   

6.
We report the structure–activity relationship of a series of coumarins as aldose reductase 2 (ALR2) inhibitors and their suppressive effect on the accumulation of galactitol in the rat lens. We evaluated their ALR2 selectivity profile against sorbitol dehydrogenase and aldehyde reductase (ALR1). Our study revealed that substitutions in the C7 OH group enhanced the potency toward ALR2, while the C6 OH group interferes with ALR1 inhibition activity. Having the phenyl moiety at C4 leads to improved potency and improved selectivity. A molecular docking study suggested that 6,7-dihydroxy-4-phenylcoumarin (15) binds to ALR2 in a different manner from epalrestat. Furthermore, compound 15 clearly suppressed galactitol accumulation in a dose-dependent manner. These results provide an insight into the structural requirements of coumarins for developing a new-type of selective ALR2 inhibitor.  相似文献   

7.
L-929 cells acclimated to media made hyperosmotic (600 mosmol/kgH2O) by addition of NaCl, sorbitol, or mannitol show, on SDS-polyacrylamide gels, a markedly enhanced protein band at 40 kDa, most likely corresponding to the enzyme aldose reductase. The effect was not observed in cells acclimated to a medium rendered hyperosmotic by addition of proline. The major organic osmolyte accumulated is sorbitol in cells acclimated to high-sorbitol or high-NaCl medium, proline in cells acclimated to high-proline medium. Cells acclimated to any of these hyperosmotic media display unaltered Na+ levels and similarly increased K+ levels and decreased Cl levels. These results are interpreted in terms of the mechanisms involved in aldose reductase induction and in regulation of the enzyme activity in long-term acclimation to hyperosmotic media. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Recent efforts to develop cure for chronic diabetic complications have led to the discovery of potent inhibitors against aldose reductase (AKR1B1, EC 1.1.1.21) whose role in diabetes is well-evident. In the present work, two new natural products were isolated from the ariel part of Ocimum basilicum; 7-(3-hydroxypropyl)-3-methyl-8-β-O-d-glucoside-2H-chromen-2-one (1) and E-4-(6′-hydroxyhex-3′-en-1-yl)phenyl propionate (2) and confirmed their structures with different spectroscopic techniques including NMR spectroscopy etc. The isolated compounds (1, 2) were evaluated for in vitro inhibitory activity against aldose reductase (AKR1B1) and aldehyde reductase (AKR1A1). The natural product (1) showed better inhibitory activity for AKR1B1 with IC50 value of 2.095 ± 0.77 µM compare to standard sorbinil (IC50 = 3.14 ± 0.02 µM). Moreover, the compound (1) also showed multifolds higher activity (IC50 = 0.783 ± 0.07 µM) against AKR1A1 as compared to standard valproic acid (IC50 = 57.4 ± 0.89 µM). However, the natural product (2) showed slightly lower activity for AKR1B1 (IC50 = 4.324 ± 1.25 µM). Moreover, the molecular docking studies of the potent inhibitors were also performed to identify the putative binding modes within the active site of aldose/aldehyde reductases.  相似文献   

9.
Authors describe the in vitro effect of bendazac-L-lysine salt on the activity of enzyme aldose reductase from rat lens. In the presence of bendazac the activity of the tested enzyme was inhibited. Lineweaver-Burk plot demonstrated that the inhibition was noncompetitive. The possible curative effects on diabetic cataract together with a better way of administration are pointed out.  相似文献   

10.
11.
The production of polyols in vitro by highly purified aldose reductase (EC 1.1.1.21) was monitored by g.l.c. In the presence of NADPH aldose reductase reduced glucose, galactose and xylose to the respective polyols sorbitol, galactitol and xylitol. The rates of formation of these polyols closely mirrored the Km values for the substrates obtained from kinetic measurements that monitored the rate of disappearance of NADPH. No polyol production occurred in the absence of purified aldose of purified aldose reductase, and analysis by g.l.c. revealed only the presence of unchanged monosaccharides. Addition of the aldose reductase inhibitor sorbinil to purified rat lens aldose reductase incubated with xylose in the presence of NADPH resulted in decreased xylitol production. However, aldose reductase inhibitors produced no effect in altering the rate of Nitro Blue Tetrazolium formation from either glucose or xylose, indicating that the observed inhibition in vitro does not result from a free-radical-scavenger effect.  相似文献   

12.
Abstract

The ability of flavonoids to affect multiple key pathways of glucose toxicity, as well as to attenuate inflammation has been well documented. In this study, the inhibition of rat lens aldose reductase by 3,7-di-hydroxy-2-[4-(2-chloro-1,4-naphthoquinone-3-yloxy)-3-hydroxy-phenyl]-5-hydroxy-chromen-4-one (compound 1), was studied in greater detail in comparison with the parent quercetin (compound 2). The inhibition activity of 1, characterized by IC50 in low micromolar range, surpassed that of 2. Selectivity in relation to the closely related rat kidney aldehyde reductase was evaluated. At organ level in isolated rat lenses incubated in the presence of high glucose, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner, which indicated that 1 was readily taken up by the eye lens cells and interfered with cytosolic aldose reductase. In addition, compound 1 provided macroscopic protection of colonic mucosa in experimental colitis in rats. At pharmacologically active concentrations, compound 1 and one of its potential metabolite 2-chloro-3-hydroxy-[1,4]-naphthoquinone (compound 3) did not affect osmotic fragility of red blood cells.  相似文献   

13.
The crystal structure of a novel sulfonyl-pyridazinone inhibitor in complex with aldose reductase, the first enzyme of the polyol pathway, has been determined to 1.43 angstroms and 0.95 angstroms resolution. The ternary complex of inhibitor, cofactor and enzyme has been obtained by soaking of preformed crystals. Supposedly due to low solubility in the crystallisation buffer, in both structures the inhibitor shows reduced occupancy of 74% and 46% population, respectively. The pyridazinone head group of the inhibitor occupies the catalytic site, whereas the chloro-benzofuran moiety penetrates into the opened specificity pocket. The high-resolution structure provides some evidence that the pyridazinone group binds in a negatively charged deprotonated state, whereas the neighbouring His110 residue most likely adopts a neutral uncharged status. Since the latter structure is populated by the ligand to only 46%, a second conformation of the C-terminal ligand-binding region can be detected. This conformation corresponds to the closed state of the specificity pocket when no or only small ligands are bound to aldose reductase. The two conformational states are in good agreement with frames observed along a molecular dynamics trajectory describing the transition from closed to open situation. Accordingly, both geometries, superimposed in the averaged crystal structure, correspond to snapshots of the ligand-bound and the unbound state. Isothermal titration calorimetry has been applied to determine the binding constants of the investigated pyridazinone in comparison to the hydantoin sorbinil and the carboxylate-type inhibitors IDD 594 and tolrestat. The pyridazinone exhibits a binding affinity similar to those of tolrestat and sorbinil, and shows slightly reduced affinity compared to IDD 594. These studies elucidating the binding mode and providing information about protonation states of protein side-chains involved in binding of this novel class of inhibitors establish the platform for further structure-based drug design.  相似文献   

14.
Renal medullary cells are normally exposed to high extracellular NaCl as part of the urinary concentrating mechanism. They react to this stress by accumulating sorbitol and other organic osmolytes. PAP-HT25, a line of epithelial cells derived from rabbit renal inner medulla, expresses this response. In hypertonic medium, these cells accumulate large amounts of sorbitol. There is a large increase in the amount of aldose reductase, which catalyzes production of sorbitol from glucose. The purpose of the present study was to investigate whether the aldose reductase protein increases because of faster synthesis or slower degradation. We measured the rate of synthesis and degradation of aldose reductase protein by pulse-chase with [35S]methionine, followed by immunoprecipitation with specific antiserum and autoradiography. The protein synthesis rate was 6 times greater in cells grown in hypertonic (500 mosmol/kg) medium, than in those grown in normal (300 mosmol/kg) medium. When control cells were switched to hypertonic medium, the synthesis rate increased 15-fold by 24 h, then decreased to 11-fold after 48 h. In contrast, synthesis rate continued to increase past 24 h when accumulation of sorbitol was prevented by inhibiting aldose reductase activity with Tolrestat. Thus, there is a feedback mechanism by which cellular sorbitol accumulation inhibits aldose reductase protein synthesis. Degradation of aldose reductase protein was slow (only about 25% in 3 days) and was not affected by osmolality. Thus, the osmoregulatory increase in aldose reductase protein is due to an increase in its synthesis rate and not to any change in its degradation.  相似文献   

15.
16.
Aldose reductase (AR; E.C. 1. 1. 1. 21) has been implicated in a variety of diabetic complications. To investigate the expression of this enzyme in target tissues susceptible to such complications, mRNA encoding AR was characterized by Northern blot hybridization in various tissues and cultured cell preparations. The size of mRNA for AR (approximately 1500 bases) was in good agreement with the size determined by sequence analysis. A cDNA probe for AR from rat lens hybridized to the same size species of RNA isolated from cultured dog lens epithelial cells, cultured human retinal capillary pericytes (mural cells), and Y 79 human retinoblastoma cells. In rat tissues, a substantial amount of mRNA was expressed not only in lens, but also in retina, sciatic nerve and kidney medulla. AR mRNA seemed to be less abundant in rat skeletal muscle and brain, and was scarcely present in liver. Furthermore, Southern blot analysis of rat genomic DNA indicated that there are multiple sequences related to that for AR, probably indicating the existence of a multi-gene family.  相似文献   

17.
The purification and properties of aldose reductase from rat ovary   总被引:4,自引:0,他引:4  
Aldose reductase has been highly purified from rat ovary to apparent homogeneity, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme proved to be a monomeric protein with a molecular weight of about 39,900. The enzyme catalyzed the NADPH-dependent reduction of a number of aromatic and aliphatic aldehydes as well as aldo-sugars. The enzyme was potently inhibited by p-chloro-mercuribenzoate and a commercially developed aldose reductase inhibitor, M79175. The result of an immunoinhibition study, using antibody against the purified enzyme, indicated that the enzyme was responsible for more than 50% of the overall catalytic activity of D-glucose reduction in rat ovarian cytosol. Western blotting analysis revealed that immunoreactive proteins to anti-ovarian aldose reductase antibody were present in adrenal gland, various reproductive tissues, brain, lung, and heart of rats. Furthermore, ovarian tissues of various species contained immunoreactive proteins, though in small amounts. The enzyme was primarily localized in the granulosa cells and oocytes of all stages of follicular development during the estrous cycle, though it was also found in the corpora lutea cells in the pregnant rats.  相似文献   

18.
Aldose reductase, the first key enzyme in the polyol pathway, is involved in complications of diabetes. Sclerotiorin, isolated and purified from the fermented broth of Penicillium frequentans, inhibited aldose reductase with an IC50 0.4 μM. The inhibitor also showed antibacterial activity against Bacillus spp.  相似文献   

19.
Aldose reductase, a monomeric NADPH-dependent oxidoreductase, catalyzes the reduction of a wide variety of aldehydes and ketones to their corresponding alcohols. The X-ray structure of human aldose reductase holoenzyme in complex with statil was determined at a resolution of 2.1 A. The carboxylate group of statil interacted with the conserved anion binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Statil's hydrophobic phthalazinyl ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group penetrating the "specificity" pocket. The interactions between the inhibitor's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding to residues Leu300 and Thr113. Based on the model of the ternary complex, the program GRID was used in an attempt to design novel potential inhibitors of human aldose reductase with enhanced binding energies of the complex. Molecular modeling calculations suggested that the replacement of the fluorine atom of statil with a carboxylate functional group may enhance the binding energies of the complex by 33%.  相似文献   

20.
Aldose reductase (AR) inhibitors have vital importance in the treatment and prevention of diabetic complications. In this study, rat kidney AR was purified 19.34-fold with a yield of 3.49% and a specific activity of 0.88?U/mg using DE-52 Cellulose anion exchange chromatography, gel filtration chromatography and 2′5′ ADP Sepharose-4B affinity chromatography, respectively. After purification, the in vitro inhibition effects of some phenolic acids (tannic acid, chlorogenic acid, sinapic acid, protocatechuic acid, 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, vanillic acid, syringic acid, α-resorcylic acid, 3-hydroxybenzoic acid and gallic acid) were investigated on purified enzyme. We determined IC50, Ki values and inhibition types of these phenolic acids. As a result, tannic and chlorogenic acid had a strong inhibition effect. On the other hand, gallic acid had a weak inhibition effect. In this study, all phenolic acids except for chlorogenic acid and p-coumaric acid showed non-competitive inhibition effects on rat kidney AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号