首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas cepacia BY21 was found to produce glutaryl acylase that is capable of deacylating glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) to 7-aminocephalosporanic acid (7-ACA), which is a starting material for semi-synthetic cephalosporin antibiotics. Amino acids of the reported glutaryl acylases from variousPseudomonas sp. strains show a high similarity (>93% identity). Thus, with the known nucleotide sequences ofPseudomonas glutaryl acylases in GenBank, PCR primers were designed to clone a glutaryl acylase gene fromP. cepacia BY21. The unknown β-subunit gene of glutaryl acylase from chromosomal DNA ofP. cepacia BY21 was cloned successfully by PCR. The β-subunit amino acids ofP. cepacia BY21 acylase (GenBank accession number AY948547) were similar to those ofPseudomonas diminuta KAC-1 acylase except that Asn408 ofP. diminuta KAC-1 acylase was changed to Leu408.  相似文献   

2.
头孢菌素酰化酶   总被引:2,自引:0,他引:2  
7-氨基头孢烷酸(7-amino cephalosporanic acid, 7-ACA)是医药工业合成大多数头孢菌素的重要原料.头孢菌素酰化酶(cephalosporin acylase, CA)催化头孢菌素C(CPC)和戊二酰-7-氨基头孢烷酸(GL-7ACA)的水解反应, 生成7-ACA.根据CA催化底物的不同, 可将其划分为两类:CPC酰化酶和GL-7ACA酰化酶.由CA的同源性、分子质量大小和基因结构, 可以把头孢菌素酰化酶划分为五种;讨论了酶的基本性质.通过CA与N端亲核水解酶(Ntn水解酶)的比较, 推测CA属于Ntn水解酶, 并由此可以进一步理解它们的生理功能.  相似文献   

3.
-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the -sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.The authors are with Research and Development, Hindustan Antibiotics Ltd, Pimpri, Pune 411 018, India;  相似文献   

4.
ABSTRACT

Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and β -lactamase are also covered.  相似文献   

5.
Cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C (CPC) and/or glutaryl 7-amino cephalosporanic acid (GL-7ACA) to produce 7-amino cephalosporanic acid (7-ACA). The acylase from Pseudomonas sp. 130 (CA-130) is highly active on GL-7ACA and glutaryl 7-aminodesacetoxycephalosporanic acid (GL-7ADCA), but much less active on CPC and penicillin G. The gene encoding the enzyme is expressed as a precursor polypeptide consisting of a signal peptide followed by alpha- and beta-subunits, which are separated by a spacer peptide. Removing the signal peptide has little effect on precursor processing or enzyme activity. Substitution of the first residue of the beta-subunit, Ser, results in a complete loss of enzyme activity, and substitution of the last residue of the spacer, Gly, leads to an inactive and unprocessed precursor. The precursor is supposed to be processed autocatalytically, probably intramolecularly. The two subunits of the acylase, which separately are inactive, can generate enzyme activity when coexpressed in Escherichia coli. Data on this and other related acylases indicate that the cephalosporin acylases may belong to a novel class of enzymes (N-terminal nucleophile hydrolases) described recently.  相似文献   

6.
Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and beta-lactamase are also covered.  相似文献   

7.
BACKGROUND: Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), which is usually obtained by chemical deacylation of cephalosporin C (CPC). The chemical production of 7-ACA includes, however, several expensive steps and requires thorough treatment of chemical wastes. Therefore, an enzymatic conversion of CPC to 7-ACA by cephalosporin acylase is of great interest. The biggest obstacle preventing this in industrial production is that cephalosporin acylase uses glutaryl-7ACA as a primary substrate and has low substrate specificity for CPC. RESULTS: We have solved the first crystal structure of a cephalosporin acylase from Pseudomonas diminuta at 2.0 A resolution. The overall structure looks like a bowl with two "knobs" consisting of helix- and strand-rich regions, respectively. The active site is mostly formed by the distinctive structural motif of the N-terminal (Ntn) hydrolase superfamily. Superposition of the 61 residue active-site pocket onto that of penicillin G acylase shows an rmsd in Calpha positions of 1.38 A. This indicates structural similarity in the active site between these two enzymes, but their overall structures are elsewhere quite different. CONCLUSION: The substrate binding pocket of the P. diminuta cephalosporin acylase provides detailed insight into the ten key residues responsible for the specificity of the cephalosporin C side chain in four classes of cephalosporin acylases, and it thereby forms a basis for the design of an enzyme with an improved conversion rate of CPC to 7-ACA. The structure also provides structural evidence that four of the five different classes of cephalosporin acylases can be grouped into one family of the Ntn hydrolase superfamily.  相似文献   

8.
对来源于假单胞菌sp.130的戊二酰-7-氨基头孢烷酸(GL-7-ACA)酰化酶结构基因的全序列及所编码蛋白质的α,β亚基的N末端和C末端的氨基酸序列进行了测定。将蛋白质序列与其他同类的GL-7-ACA酰化酶进行了同源性比较,结果显示该酶与来源于假单胞菌GK16和C427的酰化酶的序列有较高同源性,而与其它同类酰化酶的同源性较低。这些酶的α亚基N-末端差别较大,但是β-亚基的N-末端有较高的保守性。  相似文献   

9.
A novel method for detecting microorganisms capable of producing cephalosporin C (CPC) acylase and/or 7-(4-carboxybutanamido)cephalosporanic acid (GL-7-ACA) acylase has been developed. The method is based on the degradation of 2-nitro-5-(6-bromohexanoylamino)benzoic acid (NBHAB), a chromogenic substrate, into yellow 2-nitro-5-aminobenzoic acid by the action of the CPC acylase or the GL-7-ACA acylase. This method is very sensitive and quite specific, and has been successfully applied to screen the acylases from a variety of bacteria. A large number of colonies isolated on a plate surface from more than 67 samples and several known bacteria were tested by the NBHAB paper. Five NBHAB-positive strains and isolates were obtained. They were further examined by the reaction of their bacterial cells upon CPC and GL-7-ACA, respectively, and by thin-layer chromatography in order to distinguish the CPC acylase from the GL-7-ACA acylase.  相似文献   

10.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   

11.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing beta-lactam antibiotics, such as cephalexin and ampicillin. N-terminal amino acid sequencing of the purified alpha-amino acid ester hydrolase allowed cloning and genetic characterization of the corresponding gene from an A. turbidans genomic library. The gene, designated aehA, encodes a polypeptide with a molecular weight of 72,000. Comparison of the determined N-terminal sequence and the deduced amino acid sequence indicated the presence of an N-terminal leader sequence of 40 amino acids. The aehA gene was subcloned in the pET9 expression plasmid and expressed in Escherichia coli. The recombinant protein was purified and found to be dimeric with subunits of 70 kDa. A sequence similarity search revealed 26% identity with a glutaryl 7-ACA acylase precursor from Bacillus laterosporus, but no homology was found with other known penicillin or cephalosporin acylases. There was some similarity to serine proteases, including the conservation of the active site motif, GXSYXG. Together with database searches, this suggested that the alpha-amino acid ester hydrolase is a beta-lactam antibiotic acylase that belongs to a class of hydrolases that is different from the Ntn hydrolase superfamily to which the well-characterized penicillin acylase from E. coli belongs. The alpha-amino acid ester hydrolase of A. turbidans represents a subclass of this new class of beta-lactam antibiotic acylases.  相似文献   

12.
To convert cephalosporin C to 7-aminocephalosporin (7-ACA), a D-amino acid oxidase (DAAO) gene from Trigonopsis variabilis and a glutaryl-7-aminocephalosporanic acid acylase (GL-7-ACA acylase) gene from Pseudomonas were cloned and expressed in recombinant Escherichia coli. For DAAO recombinant strain BL21(DE3)/pET-DAAO, a high DAAO activity of 250 U ml−1 was obtained by a fed-batch culture. A GL-7-ACA acylase gene, in which the signal peptide sequence was deleted, was also successfully expressed in a recombinant E. coli BL21(DE3)/pET-ACY with a high expression level of 3000 U l−1. A novel recombinant strain, BL21(DE3)/pET-DA, harboring both genes of DAAO and GL-7-ACA acylase, was further constructed, and a rather high DAAO activity of 140 U ml−1 and GL-7-ACA acylase activity of 950 U l−1 were simultaneously obtained. This recombinant strain, in which two genes are co-expressed, made it possible to catalyze cephalosporin C into 7-ACA directly.  相似文献   

13.
Directed evolution of a glutaryl acylase into an adipyl acylase.   总被引:2,自引:0,他引:2  
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.  相似文献   

14.
A strain of Bacillus species which produced an enzyme named glutaryl 7-ACA acylase which converts 7 beta-(4-carboxybutanamido)cephalosporanic acid (glutaryl 7-ACA) to 7-amino cephalosporanic acid (7-ACA) was isolated from soil. The gene for the glutaryl 7-ACA acylase was cloned with pHSG298 in Escherichia coli JM109, and the nucleotide sequence was determined by the M13 dideoxy chain termination method. The DNA sequence revealed only one large open reading frame composed of 1,902 bp corresponding to 634 amino acid residues. The deduced amino acid sequence contained a potential signal sequence in its amino-terminal region. Expression of the gene for glutaryl 7-ACA acylase was performed in both E. coli and Bacillus subtilis. The enzyme preparations purified from either recombinant strain of E. coli or B. subtilis were shown to be identical with each other as regards the profile of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and were composed of a single peptide with the molecular size of 70 kDa. Determination of the amino-terminal sequence of the two enzyme preparations revealed that both amino-terminal sequences (the first nine amino acids) were identical and completely coincided with residues 28 to 36 of the open reading frame. Extracellular excretion of the enzyme was observed in a recombinant strain of B. subtilis.  相似文献   

15.
The enzymatic transformation of cephalosporin C to 7-amino-cephalosporanic acid (7-ACA) using coimmobilized -aminoacid oxidase (DAAO) and 7-β-(4-carboxybutanamido)cephalosporanic acid acylase (Gl-7-ACA acylase) is reported. The results from the coimmobilization of the two enzymes on different carriers and at different ratios of enzyme activities are described. When an inhibitor of catalase activity, such as NaN3 or H2O2, is present, the conversion rate to 7-ACA is higher, but more by-products are obtained. An optimum ratio of 60:1 between the enzymatic activities of DAAO and Gl-7-ACA acylase in the coimmobilized sample at 0.21 Ug−1 Gl-7-ACA acylase activity was determined. The results of using coimmobilized enzymes and of using a mixture of separately immobilized enzymes in the same process are compared.  相似文献   

16.
Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), mainly by environmentally toxic chemical deacylation of cephalosporin C (CPC). Thus, the enzymatic conversion of CPC to 7-ACA by cephalosporin acylase (CA) would be very interesting. However, CAs use glutaryl-7-ACA (GL-7-ACA) as a primary substrate and the enzymes have low turnover rates for CPC. The active-site residues of a CA were mutagenized to various residues to increase the deacylation activity of CPC, based on the active-site conformation of the CA structure. The aim was to generate sterically favored conformation of the active-site to accommodate the D-alpha-aminoadipyl moiety of CPC, the side-chain moiety that corresponds to the glutaryl moiety of GL-7-ACA. A triple mutant of the CA, Q50betaM/Y149alphaK/F177betaG, showed the greatest improvement of deacylation activity to CPC up to 790% of the wild-type. Our current study is an efficient method for improving the deacylation activity to CPC by employing the structure-based repetitive saturation mutagenesis.  相似文献   

17.
The gene coding for the glutaryl 7-aminocephalosporanic acid (GL 7-ACA) acylase from Pseudomonas diminuta KAC-1 was cloned and expressed in Escherichia coli. The acylase gene was composed of 2160 base pairs and encoded a polypeptide of 720 amino acid residues. The E. coli BL21 carrying pET2, the plasmid construct for high expression of GL 7-ACA acylase gene, produced this enzyme at approx. 30% of the total proteins with 3.2 units activity mg protein–1. Growth at temperature below 31 °C and deletion of signal peptide increased the processing of precursor acylase to active enzyme in the recombinant E. coli cells.  相似文献   

18.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

19.
Semisynthetic cephalosporins, the best-selling antibiotics worldwide, are derived from 7-aminocephalosporanic acid (7-ACA). Currently, in the pharmaceutical industrie, 7-ACA is mainly produced from cephalosporin C by sequential application of D -amino acid oxidase and cephalosporin acylase. Here we study the potential of industrially amenable enzyme γ-glutamyltranspeptidase from Bacillus subtilis for 7-ACA production, since the wild-type γ-glutamyltranspeptidase of B. subtilis has inherent glutaryl-7-aminocephalosporanic acid acylase activity with a kcat value of 0.0485 s-1. Its activity has been enhanced by site directed and random mutagenesis. The kcat/Km value was increased to 3.41 s-1 mM-1 for a E423Y/E442Q/D445N mutant enzyme and the kcat value was increased to 0.508 s-1 for a D445G mutant enzyme. Consequently, the catalytic efficiency and the turnover rate were improved up to about 1000-fold and 10-fold, compared with the wildtype γ-glutamyltranspeptidase of B. subtilis.  相似文献   

20.
The glutaryl 7-aminocephalosporanic acid (GL-7-ACA) acylase from Pseudomonas sp. strain GK16 is an (alphabeta)2 heterotetramer of two non-identical subunits that are cleaved autoproteolytically from an enzymatically inactive precursor polypeptide. The newly formed N-terminal serine of the beta subunit plays an essential role as a nucleophile in enzyme activity. Chemical modification studies on the recombinant enzyme purified from Escherichia coli revealed the involvement of a single arginine and tryptophan residue, per alphabeta heterodimer of the enzyme, in the catalytic activity of the enzyme. Glutaric acid, 7-aminocephalosporanic acid (7-ACA) (competitive inhibitors) and GL-7-ACA (substrate) could not protect the enzyme against phenylglyoxal-mediated inactivation, whereas except for glutaric acid protection was observed in case of N-bromosuccinimide-mediated inactivation of the enzyme. Kinetic parameters of partially inactivated enzyme samples suggested that while arginine is involved in catalysis, tryptophan is involved in substrate binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号