首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract In order to determine whether non-elastase-producing strains of Pseudomonas aeruginosa such as N-10, PA103 and IFO3080 can express foreign elastase genes, we introduced elastase genes from P. aeruginosa IFO3455 (elastase-producing) as well as from PA103 and N-10 into non-elastase-producing P. aeruginosa strains. Results suggested that gene expression, secretion, and precursor processing systems of elastase were essentially normal in P. aeruginosa N-10 and IFO3080. Our studies using various elastase genes showed that both the elastase structural gene and 5'-upstream regions of P. aeruginosa PA103 were also normal. This was confirmed by the finding that P. aeruginosa N-10 and IFO3080 which carry the PA103 elastase gene produced elastase. Several deleted or chimeric genes were constructed using the 5'-upstream regions of elastase genes from P. aeruginosa N-10 or PA103 and studies of expression revealed that two individual DNA bases seem to be important in suppressing P. aeruginosa N-10 elastase gene expression. Possible reasons for the lack of elastase in these non-elastase-producing strains are discussed.  相似文献   

2.
IM-2 [(2R,3R,1'R)-2-(1'-hydroxybutyl)-3-(hydroxymethyl)butanolide] of Streptomyces sp. strain FRI-5 is one of the butyrolactone autoregulators of Streptomyces species and triggers production of blue pigment as well as the nucleoside antibiotics showdomycin and minimycin. A tritium-labeled IM-2 analogue, 2,3-trans-2(1'-beta-hydroxy-[4',5'-3H]pentyl)-3-(hydroxymethyl)butano lide ([3H]IM-2-C5; 40 Ci/mmol), was synthesized for a competitive binding assay, and an IM-2-specific binding protein was found to be present in the crude cell extract of Streptomyces sp. strain FRI-5. During cultivation for 24 h, the specific IM-2-binding activity increased rapidly, reached a plateau at 10 to 14 h, and declined sharply thereafter, showing only 6% activity after 24 h of cultivation. A Scatchard plot of the binding data demonstrated that the dissociation constant (Kd) for [3H]IM-2-C5 was 1.3 nM, while the Kd for a 3H-labeled virginiae butanolide (VB) analogue, 2-(1'-alpha-hydroxy-[6',7'-3H]heptyl)-3-(hydroxymethyl)butanolide ([3H]VB-C7), another butyrolactone autoregulator possessing the opposite configuration at C-1' was 35 nM. Furthermore, at a 15-fold molar excess, the effectiveness of several autoregulators as nonlabeled competitive ligands against [3H]IM-2-C5 was IM-2 type > VB-C type >> A-factor type, indicating that the binding protein in Streptomyces sp. strain FRI-5 is highly specific toward IM-2. Ultracentrifugation showed that the IM-2-binding protein is present almost exclusively in the 100,000 x g supernatant fraction, indicating that the binding protein is a cytoplasmic soluble protein. The binding protein was purified by ammonium sulfate precipitation, DEAE-Sephacel chromatography, Sephacryl S-100 HR gel filtration, DEAE-5PW high-performance liquid chromatography (HPLC), and phenyl-5PW HPLC. The apparent Mr of the native IM-2-binding protein as determined by molecular sieve HPLC was about 60,000 in the presence of 0.5, 0.3, or 0.1 M KCl, while by sodium dodecyl sulfate-polyacrylamide gel electrophoresis it was about 27,000, suggesting that the native binding protein is present in the form of a dimer.  相似文献   

3.
4.
IM-2 [(2R,3R,1'R)-2-1'-hydroxybutyl-3-hydroxymethyl gamma-butanolide] is a gamma-butyrolactone autoregulator which, in Streptomyces lavendulae FRI-5, switches off the production of D-cycloserine but switches on the production of a blue pigment and several nucleoside antibiotics. To clarify the in vivo function of an IM-2-specific receptor (FarA) in the IM-2 signaling cascade of S. lavendulae FRI-5, a farA deletion mutant was constructed by means of homologous recombination. On several solid media, no significant difference in morphology was observed between the wild-type strain and the farA mutant (strain K104), which demonstrated that the IM-2-FarA system does not participate in the morphological control of S. lavendulae FRI-5. In liquid media, the farA mutant overproduced nucleoside antibiotics and produced blue pigment earlier than did the wild-type strain, suggesting that the FarA protein acts primarily as a negative regulator on the biosynthesis of these compounds in the absence of IM-2. However, contrary to the IM-2-dependent suppression of D-cycloserine production in the wild-type strain, overproduction of D-cycloserine was observed in the farA mutant, indicating for the first time that the presence of both IM-2 and intact FarA are necessary for the suppression of D-cycloserine biosynthesis.  相似文献   

5.
6.
Virginiae butanolides (VBs) and IM-2 are members of Streptomyces hormones called 'butyrolactone autoregulators' which regulate the antibiotic production in Streptomyces species at nanomolar concentrations. Cell-free extract of a VB-A overproducer, Streptomyces antibioticus NF-18, is capable of catalyzing the final step of the autoregulator biosynthesis, namely, the NADPH-dependent reduction of 6-dehydroVB-A. However, physico-chemical analyses of the purified enzymatic products revealed that, in addition to the VB-type isomer [(2R,3R,6S)-enantiomer], IM-2-type isomers [(2R,3R, 6R)- and (2S,3S,6S)-enantiomers] were also produced from (+/-)-6-dehydroVB-A, suggesting the existence of several 6-dehydroVB-A reductases with respective stereoselectivities. The reductase activity of the crude extracts was separated into two activity peaks, peak I (major) and peak II (minor), by DEAE-5PW HPLC. Chiral HPLC analyses demonstrated that peak I enzyme and peak II enzyme catalyzed the production of (2R,3R,6S), (2R,3R,6R) and (2S,3S, 6S) isomers at ratios of 46:1:3.2 and 4.9:1:1.5, respectively, indicating clearly that S. antibioticus NF-18 possesses at least two 6-dehydroVB-A reductases: one much favored toward VB-A biosynthesis, the other with relaxed stereoselectivity capable of synthesizing both VB-type and IM-2-type autoregulators.  相似文献   

7.
8.
9.
Abstract The lipoteichoic acid (LTA) isolated from Streptococcus cremoris T5, a representative strain from the fermented milk product 'viili', is shown by crossed immunoelectrophoresis (CIE) to appear mainly in acylated form. Isolated plasma membranes contain two LTA antigens, as revealed by co-CIE with isolated LTA. It is concluded from immunoadsorption experiments with washed intact cells that LTA from the membrane structure is also detectable on the surface of intact cells. The significance of these findings for the quality of thick or slimy fermented milk products is discussed.  相似文献   

10.
11.
Virginiae butanolides (VBs) and IM-2 are members of Streptomyces hormones called ‘butyrolactone autoregulators’ which regulate the antibiotic production in Streptomyces species at nanomolar concentrations. Cell-free extract of a VB-A overproducer, Streptomyces antibioticus NF-18, is capable of catalyzing the final step of the autoregulator biosynthesis, namely, the NADPH-dependent reduction of 6-dehydroVB-A. However, physico-chemical analyses of the purified enzymatic products revealed that, in addition to the VB-type isomer [(2R,3R,6S)-enantiomer], IM-2-type isomers [(2R,3R,6R)- and (2S,3S,6S)-enantiomers] were also produced from (±)-6-dehydroVB-A, suggesting the existence of several 6-dehydroVB-A reductases with respective stereoselectivities. The reductase activity of the crude extracts was separated into two activity peaks, peak I (major) and peak II (minor), by DEAE-5PW HPLC. Chiral HPLC analyses demonstrated that peak I enzyme and peak II enzyme catalyzed the production of (2R,3R,6S), (2R,3R,6R) and (2S,3S,6S) isomers at ratios of 46:1:3.2 and 4.9:1:1.5, respectively, indicating clearly that S. antibioticus NF-18 possesses at least two 6-dehydroVB-A reductases: one much favored toward VB-A biosynthesis, the other with relaxed stereoselectivity capable of synthesizing both VB-type and IM-2-type autoregulators.  相似文献   

12.
13.
From Streptomyces virginiae, in which production of streptogramin antibiotic virginiamycin M(1) and S is tightly regulated by a low-molecular-weight Streptomyces hormone called virginiae butanolide (VB), which is a member of the gamma-butyrolactone autoregulators, the hormone biosynthetic gene (barS1) was cloned and characterized by heterologous expression in Escherichia coli and by gene disruption in S. virginiae. The barS1 gene (a 774-bp open reading frame encoding a 257-amino-acid protein [M(r), 27,095]) is situated in the 10-kb regulator island surrounding the VB-specific receptor gene, barA. The deduced BarS1 protein is weakly homologous to beta-ketoacyl-acyl carrier protein/coenzyme A reductase and belongs to the superfamily of short-chain alcohol dehydrogenase. The function of the BarS1 protein in VB biosynthesis was confirmed by BarS1-dependent in vitro conversion of 6-dehydro-VB-A to VB-A, the last catalytic step in VB biosynthesis. Of the four possible enantiomeric products from racemic 6-dehydro-VB-A as a substrate, only the natural enantiomer of (2R,3R,6S)-VB-A was produced by the purified recombinant BarS1 (rBarS1), indicating that rBarS1 is the stereospecific reductase recognizing (3R)-isomer as a substrate and reducing it stereospecifically to the (6S) product. In the DeltabarS1 mutant created by homologous recombination, the production of VB as well as the production of virginiamycin was lost. The production of virginiamycin by the DeltabarS1 mutant was fully recovered by the external addition of VB to the culture, which indicates that the barS1 gene is essential in the biosynthesis of the autoregulator VBs in S. virginiae and that the failure of virginiamycin production was a result of the loss of VB production.  相似文献   

14.
A new autoregulator designated as IM2, which induces blue pigment production in Streptomyces sp. MAFF 10-06015, was discovered. The culture conditions developed here for the production of the pigment by the strain did not require the addition of an artificial inducer such as γ-nonalactone or the autoregulator of S. virginiae MAFF 10-06014, IM, which induces the production of virginiamycin by this microorganism. The major improvements in the culture conditions for spontaneous pigment production included the inoculation conditions and the dilution of the medium. The method of IM2 assay was established and the time courses of IM2 production were followed in the cultures using flasks and a jar fermentor. It was confirmed that IM2 released once into the culture filtrate from the cells was taken up into the cells again. The concentration of IM required to induce pigment production in Streptomyces sp. MAFF 10-06015 was 50 u·ml−1. However a concentration of 200 u·ml−1 of IM2 was unable to induce the production of virginiamycin in S. virginiae MAFF 10-06014.  相似文献   

15.
Virginiae butanolides (VBs) are autoregulators of Streptomyces virginiae, which induce virginiamycin biosynthesis. Generally, autoregulators are synthesized by the microorganism itself during culture. Addition of chemically synthesized virginiae butanolide-C (VB-C), which is one of the VBs, can also control the induction time and the amount of virginiamycin production. The optimum concentration and shot-feeding time of VB-C for the maximum production of virginiamycins M and S were investigated in flasks and jar-fermentor batch cultures. VB-C addition later than 8 h from the start of culture induced not only virginiamycin M and S synthesis but also VB synthesis. Virginiamycin M and S production increased with the decrease of total VBs (produced VBs and added VB-C) concentration. That is, although VBs are needed to induce virginiamycin M and S synthesis, the amount of VB-C added should be such that as small an amount as possible of VBs is synthesized to achieve the maximum production of virginiamycins M and S. However, the VB-C addition earlier than 8 h from the start of culture showed no clear relationship between the amounts of VBs and virginiamycins M and S produced. In conclusion, the maximum production of virginiamycins M and S was attained by the shot addition of 5 mug/L VB-C at 8 h from the start of culture. The maximum value was about twofold that without VB-C addition. The optimum addition strategy of VB-C was confirmed by the jar-fermentor experiments. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
17.
The gamma-butyrolactone-type autoregulator/receptor systems in the Gram-positive bacterial genus Streptomyces regulate morphological differentiation or antibiotic production, or both. The autoregulator receptors act as DNA-binding proteins, and on binding their cognate ligands (gamma-butyrolactones) they are released from the DNA, thus serving as repressors. The crystal structure of CprB in Streptomyces coelicolor A3(2), a homologue of the A-factor-receptor protein, ArpA, in Streptomyces griseus, was determined. The overall structure of CprB shows that the gamma-butyrolactone receptors belong to the TetR family. CprB is composed of two domains, a DNA-binding domain and a regulatory domain. The regulatory domain contains a hydrophobic cavity, which probably serves as a ligand-binding pocket. On the basis of the crystal structure of CprB and on the analogy of the characteristics of ligand-TetR binding, the binding of gamma-butyrolactones to the regulatory domain of the receptors is supposed to induce the relocation of the DNA-binding domain through conformational changes of residues located between the ligand-binding site and the DNA-binding domain, which would result in the dissociation of the receptors from their target DNA.  相似文献   

18.
From a soil sample a new microorganism was isolated, described and identified as Streptomyces lisandri nov. sp. In submerged fermentation in a suitable culture medium this streptomycete produces three new related compounds, axenomycins A, B and D. Data on the anthelmintic, antiprotozoal and antifungal activities in vitro are reported.  相似文献   

19.
20.
About 70 Streptomyces species, isolated from soils of greenhouses and citrus orchards were evaluated for their antagonistic activity against Verticillium dahliae, Fusarium subglutinans, Fusarium sambucinum, Phoma glomerata and Nattrassia mangiferae. Preliminary screening for antimicrobial activity was determined by dual culture method. The soils of Kerman are rich sources of micro-organisms with potent biological activities, and screening programmes are to be conducted to reveal the presence of active Actinomycetes isolates against phytopathogenic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号