共查询到20条相似文献,搜索用时 15 毫秒
1.
M B Hansen N Bindslev 《Comparative biochemistry and physiology. A, Comparative physiology》1989,94(2):315-321
1. Serotonin, 100 microM, induces a peak increase in short circuit current of about 150 microA/cm2 and in cord conductance of about 7 mS/cm2 and a more prolonged increase of 30 microA/cm2 and 1.4 mS/cm2 which lasts more than 30 min in hen colon. 2. The peak increase in short circuit current and cord conductance is due to a concomitant Cl- secretion. 3. The second messenger, which mediates Cl- secretion, increases in short circuit current and cord conductance, is cyclic AMP as theophylline, 0.5 mM, increases the response in short circuit current to 1 microM serotonin from 38 +/- 5 to 78 +/- 8 microA/cm2 and in g from 1.1 +/- 0.4 to 2.0 +/- 0.3 mS/cm2. 4. Theophylline, 0.5 mM, also sensitizes the hen colon to cyclic AMP yielding an EC50 of 0.24 +/- 0.03 mM in the presence of theophylline compared with an EC50 of 2.3 +/- 0.2 mM in the absence of theophylline. 5. Manipulations of other putative second messenger systems, such as the prostaglandins/leucotrienes, the phosphoinositides and external Ca2+ or calmodulin-sensitive enzymes, did not influence the serotonin response in short circuit current and cord conductance, thus ruling out their importance as intracellular mediators. 相似文献
2.
1. The effect of serotonin on chloride secretion in hen colon was studied under short circuit conditions. 2. Serotonin added to the serosal side induced a short-lived peak increase in Cl(-)-secretion (6.2 +/- 1.0 mumole.cm-2.h-1), in short circuit current (5.4 +/- 0.7 mumole.cm-2.h-1) and in cord conductance (8.1 +/- 0.7 mS.cm-2) with an apparent EC50 around 8 microM, and a more prolonged rise in chloride secretion of around 3.0 mumole.cm-2.h-1. 3. The short circuit current is a reasonable measure of net chloride secretion at the peak. 4. Several specific and non-specific serotonin receptor antagonists were studied for their influence on the serotonin induced peak response in short circuit current and cord conductance. 5. These antagonists covered the whole range of currently defined serotonin receptor types and subtypes: 5-HT1A, 5-HT1B, 5-HT1C, 5-HT1D, 5-HT2, and 5-HT3. 6. Adrenergic, cholinergic and histaminergic receptor antagonists were also tested for an interaction at the serotonin receptor involved in Ca(-)-secretion. 7. None of the antagonists had any influence on the serotonin response in short circuit current or cord conductance. 相似文献
3.
4.
5.
R J Phipps S M Denas A Wanner 《Journal of applied physiology (Bethesda, Md. : 1985)》1983,55(5):1593-1602
We studied the effects of in vitro challenge with specific antigen (Ascaris suum antigen) on glycoprotein secretion and ion fluxes in tracheal tissues from allergic sheep. We mounted tissues in Perspex chambers and measured secretion of 35S- and 3H-labeled glycoproteins and fluxes of Cl- and Na+. In tissues from allergic sheep, A. suum antigen (25 micrograms protein X ml-1) increased glycoprotein secretion. A. suum antigen initially reversed net Cl- flux, causing net absorption of Cl- and of Na+. This was followed 15-30 min later by net secretion of Cl- and of Na+. Pretreatment of tissues with cromolyn (10(-4) M) greatly reduced the effects of A. suum antigen but did not abolish them. The cromolyn-resistant effects were nonspecific, because they were similar to those of in vitro challenges with nonspecific proteins, ovalbumin and ragweed in allergic sheep, and A. suum antigen in nonallergic sheep. We conclude that challenge with A. suum antigen results in mucus hypersecretion in airways of allergic sheep, by both specific and smaller nonspecific effects. Specific effects (cromolyn sensitive) are produced by mediators which are released from airway cells in response to A. suum challenge. 相似文献
6.
Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABA(A) receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A) receptor-mediated currents. Moreover, activation of the GABA(A) receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A) receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A) receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A) receptors, also modified ASICs in spinal neurons. We conclude that GABA(A) receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels. 相似文献
7.
8.
Summary Cl-sensitive microelectrodes were employed to investigate the mechanism of Cl secretion by canine tracheal epithelium. In control tissues with a mean calculated short-circuit current (I
sc) of 18.1 A/cm2, the intracellular Cl activity (a
Cl
i
) was 47.2mm. This value is 30.1mm (or 27.0 mV) above the electrochemical equilibrium for Cl across the apical membrane. Epinephrine, which stimulates Cl secretion, increased the calculatedI
sc to 160 A/cm2 and decreaseda
Cl
i
to 32.2mm, a value only 11.2mm (or 10.9 mV) above equilibrium for the apical membrane. These results indicate a secretagogue induced decrease in the impedance to Cl exit from the cell via the apical membrane. From these and prior measurements we calculate that epinephrine-induced Cl efflux from the cell can occur by simple diffusion across the apical membrane. Further implications of these calculations are also discussed. 相似文献
9.
Formation of second messengers in response to activation of ion channels in excitable cells 总被引:6,自引:0,他引:6
1. Depolarization of excitable cells of the central nervous system results in the formation of the second messengers cyclic AMP, cyclic GMP, inositol phosphates, and diacylglycerides. 2. Depolarization-evoked accumulation of cyclic AMP in brain preparations can be accounted for mainly by the release of adenosine, which subsequently interacts with stimulatory adenosine receptor linked to adenylate cyclase. 3. Depolarization-evoked formation of cyclic GMP in brain preparations is linked to activation of voltage-dependent calcium channels, presumably leading to activation of guanylate cyclase by calcium ions. 4. In brain slices depolarization-evoked stimulation of phosphoinositide breakdown and subsequent formation of inositol phosphates and diacylglycerides are linked to activation of voltage-dependent calcium channels, which are sensitive to dihydropyridines, presumably leading to activation of phospholipase(s) C by calcium ions. 5. In the synaptoneurosome preparation depolarization-evoked stimulation of phosphoinositide breakdown does not involve activation of dihydropyridine-sensitive calcium channels and, instead, appears to be regulated primarily by the intracellular concentration of sodium ions. Thus, agents that induce increases in intracellular sodium--such as toxins that open or delay inactivation of voltage-dependent sodium channels; ouabain, an inhibitor of Na+/K+ ATPase that transports sodium outward and a sodium ionophore--all stimulate phosphoinositide breakdown. Mechanistically, increases in intracellular sodium either might directly affect phospholipase(s) C or might lead to influx of calcium ions through Na+/Ca2+ transporters. 6. Depolarization-evoked stimulation of cyclic AMP formation and phosphoinositide breakdown can exhibit potentiative interactions with responses to receptor agonists, thereby providing mechanisms for modulation of receptor responses by neuronal activity. 7. Since all these second messengers can induce phosphorylation of ion channels through the activation of specific kinases, it is proposed that depolarization-evoked formation of second messengers represents a putative feedback mechanism to regulate ion fluxes in excitable cells. 相似文献
10.
This study was aimed to define roles of stretch-activated ion channels (SACs), especially Cl(-) channels, in regulation of atrial natriuretic peptide (ANP) secretion using isolated perfused beating atria. The volume load was achieved by elevating height of outflow catheter connected to isolated rat atria and the pressure load was achieved by decreasing diameter of outflow catheter. Both methods increased atrial contractility similarly although volume load was different (736microl for volume load vs. 129microl for pressure load). Atrial stretch by volume load markedly increased ECF translocation and ANP secretion but the pressure load slightly increased. The ANP secretion was positively correlated to workload generated by volume or pressure load. Treatment of atria with gadolinium, a blocker for SACs, attenuated the ECF translocation and the ANP secretion induced by volume load. A blocker for Ca2+-activated Cl(-) channel, niflumic acid (NFA), accentuated the ANP secretion induced by volume load whereas a blocker for swelling-activated Cl(-) channel, diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS), attenuated the ANP secretion. The ANP secretion of hypertrophied atria by volume load was markedly reduced and the augmented effect of NFA on volume load-induced ANP secretion was not observed. These results indicate that Cl(-) channels may differently regulate stretch-activated ANP secretion. 相似文献
11.
Bacterial pneumonia stimulates macromolecule secretion and ion and water fluxes in sheep trachea 总被引:1,自引:0,他引:1
Phipps R. J.; Torrealba P. J.; Lauredo I. T.; Denas S. M.; Sielczak M. W.; Ahmed A.; Abraham W. M.; Wanner A. 《Journal of applied physiology》1987,62(6):2388-2397
In vivo instillation of Pasteurella haemolytica (greater than or equal to 10(7) colony-forming units/kg) into a lobar bronchus of sheep produced bacterial pneumonia by 7 days postinoculation. Infection was verified bacteriologically and histologically. Macromolecule secretion and ion and water fluxes were subsequently measured in tracheal tissues in vitro and were compared with values from sham-infected sheep. Macromolecules were radiolabeled with 35SO4 and [3H]threonine, and we measured the secretion of macromolecule-bound radiolabel onto the mucosa. Unidirectional fluxes of Cl-, Na+, and water were measured with radioactive tracers under open-circuit and short-circuit conditions. Lung infection increased basal secretion of bound 35SO4 (by 189%) and bound [3H]-threonine (by 110%). It significantly increased net Na+ absorption under open- and short-circuit conditions and induced open-circuit net absorption of Cl- and water (16 +/- 29 microliters X cm-2 X h-1). These changes were associated with specific recruitment of neutrophils and elevated levels of arachidonate metabolites (thromboxane B2 and leukotriene B4) in the airways. Thus the bacterial pneumonia-induced changes in tracheal mucus secretion may be the result of airway inflammation. 相似文献
12.
A E Boyd 《Journal of cellular biochemistry》1992,48(3):235-241
Ion channels in beta cells regulate electrical and secretory activity in response to metabolic, pharmacologic, or neural signals by controlling the permeability to K+ and Ca2+. The ATP-sensitive K+ channels act as a switch that responds to fuel secretagogues or sulfonylureas to initiate depolarization. This depolarization opens voltage-dependent calcium channels (VDCC) to increase the amplitude of free cytosolic Ca2+ levels ([Ca2+]i), which triggers exocytosis. Acetyl choline and vasopressin (VP) both potentiate the acute effects of glucose on insulin secretion by generating inositol 1,4,5-trisphosphate to release intracellular Ca2+; VP also potentiates sustained insulin secretion by effects on depolarization. In contrast, inhibitors of insulin secretion decrease [Ca2+]i by either hyperpolarizing the beta cell or by receptor-mediated, G-protein-coupled effects to decrease VDCC activity. Repolarization is initiated by voltage- and Ca(2+)-activated K+ channels. A human insulinoma voltage-dependent K+ channel cDNA was recently cloned and two types of alpha 1 subunits of the VDCC have been identified in insulin-secreting cell lines. Determining how ion channels regulate insulin secretion in normal and diabetic beta cells should provide pathophysiologic insight into the beta cell signal transduction defect characteristic of non-insulin dependent diabetes (NIDDM). 相似文献
13.
Dutzler R 《FEBS letters》2004,564(3):229-233
Members of the ClC family of voltage-gated chloride channels are found from bacteria to mammals with a considerable degree of conservation in the membrane-inserted, pore-forming region. The crystal structures of the ClC channels of Escherichia coli and Salmonella typhimurium provide a structural framework for the entire family. The ClC channels are homodimeric proteins with an overall rhombus-like shape. Each ClC dimer has two pores each contained within a single subunit. The ClC subunit consists of two roughly repeated halves that span the membrane with opposite orientations. This antiparallel architecture defines a chloride selectivity filter within the 15-A neck of a hourglass-shaped pore. Three Cl(-) binding sites within the selectivity filter stabilize ions by interactions with alpha-helix dipoles and by chemical interactions with nitrogen atoms and hydroxyl groups of residues in the protein. The Cl(-) binding site nearest the extracellular solution can be occupied either by a Cl(-) ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl(-) ion. 相似文献
14.
15.
Horst Fischer Wolfgang Kromer Wolfgang Clauss 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,161(4):333-338
Summary Freshly isolated epithelial cells from hen colon were investigated using the patch-clamp technique. The aim of this investigation was to characterise the cellular conducting site for Cl- secretion. In cell-attached mode two types of Cl--channels were found. Both showed distinct outward rectification. The channel types differed in single channel conductances and the marked voltage dependence of the open probabilities. A low conductance Cl--channel was observed with a mean conductance at negative holding potentials of g-=9 pS, and of g+=34 pS at positive potentials. This channel was predominantly open at negative potentials, corresponding to cell hyperpolarization. The second channel type observed had conductances of g-=35 pS and g+=77 pS, and showed increasing open probabilities with increasing holding potentials (cell depolarisation). Both channel types were blockable by the Cl--channel blocker NPPB. These data in combination with previously published transepithelial transport data on hen colon indicate that these channels are the Cl- secretory sites in colon epithelium.Abbreviations DNSO
dimethylsulfoxide
- EGTA
ethyleneglycol triacetic acid
- g+, g-
single channel conductance at positive and negative voltages
- HEPES
N-(2-hydroxy-ethyl)piperazine-N-(2-ethane-sulfonic acid)
- i
single channel current
- NMDG
N-methyl-d-glucosamine
- NPPB
5-hitro-2-(3-phenylpropylamino)-benzoate
- Po
open probability
- Vp
holding potential 相似文献
16.
《The Journal of general physiology》1995,106(5):1031-1046
The block by the symmetric tetraethylammonium (TEA) ion derivatives tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA) ions of fast chloride channels in acutely dissociated rat cortical neurons was studied with the excised inside- out configuration of the patch-clamp technique. When applied to the intracellular membrane surface, all three of the quaternary ammonium compounds (QAs) induced the appearance of short-lived closed states in a manner consistent with a blocking mechanism where the blocker preferentially binds to the open kinetic state and completely blocks ion current through the channel. The drug must leave the channel before the channel can return to a closed state. The mechanism of block was studied using one-dimensional dwell-time analysis. Kinetic models were fit to distributions of open and closed interval durations using the Q- matrix approach. The blocking rate constants for all three of the QAs were similar with values of approximately 12-20 x 10(6) M-1s-1. The unblocking rates were dependent on the size or hydrophobicity of the QA with the smallest derivative, TPrA, inducing a blocked state with a mean lifetime of approximately 90 microseconds, while the most hydrophobic derivative, TPeA, induced a blocked state with a mean lifetime of approximately 1 ms. Thus, it appears as though quaternary ammonium ion block of these chloride channels is nearly identical to the block of many potassium channels by these compounds. This suggests that there must be structural similarities in the conduction pathway between anion and cation permeable channels. 相似文献
17.
A E Antipenko 《Biokhimii?a (Moscow, Russia)》1991,56(4):589-620
Advances in regulation by secondary messengers of Ca2+ level in cardiomyocyte and vascular smooth muscle cell cytosols with special reference to the major differences in regulatory effects in cells of the both types are reviewed. The effects of cAMP, cGMP, Ca2+, calmodulin, diacylglycerol and polyphosphoinositides on the Ca(2+)-channel, Ca(2+)-ATPase, plasmalemma, sarcoplasmic reticulum and outer membrane Na+/Ca2+ uniporter function are considered. Compartmentation of secondary messengers and protein kinase in cardiac and vascular smooth muscle cells should be taken into consideration during extrapolation of in vitro data to an in situ situation. The feasible role of impaired phosphorylation of membrane-bound proteins of cardiac and vascular smooth muscle cells in cardiac insufficiency and atherosclerosis is discussed. 相似文献
18.
Dmitry Diykov Lacey J. Jenson Jeffrey R. Bloomquist 《Invertebrate neuroscience : IN》2013,13(1):57-62
In this study, we performed electrophysiological analysis of Anopheles gambiae Sua-1B cells having “neuron-like” morphologies using the patch clamp method. The recorded cells (n = 79) had processes resembling axons/dendrites, with 63 % unipolar, 22 % bipolar, and 15 % multipolar. While no inward currents were observed following step depolarizations (holding potential = ?80 mV), a slowly activating outward current was observed in 96 % of the cells, especially at depolarized potentials. The amplitude of the current was attenuated nearly 70 % by reducing extracellular Cl? ion concentration, or by incubating with 100 μM DIDS, a known voltage-sensitive chloride channel blocker, suggesting that the current was mediated by chloride ions. No qualitative difference was found between recordings made with Cs+ ions in the intracellular pipette solution (inhibits K+ currents) and those made with normal physiological solution, indicating a deficiency of potassium channels. Additionally, recordings made with Ca2+-free extracellular bath solution eliminated the slowly activating outward current. A subset of cells (n = 3) lacked this current, but had outward currents with voltage-dependent properties similar to those of volume-regulated chloride channels. Taken together, our results suggest that the voltage-sensitive currents observed in the majority of Sua-1B cells are mediated primarily by chloride channels of the calcium-dependent subtype. 相似文献
19.
The molecular mechanisms controlling fluid secretion within the oviduct have yet to be determined. As in other epithelia, both secretory and absorptive pathways are likely to work in tandem to drive appropriate ionic movement to support fluid movement across the oviduct epithelium. This study explored the role of potassium channels in basolateral extracellular ATP (ATP(e))-stimulated ion transport in bovine oviduct epithelium using the Ussing chamber short-circuit current (I(SC)) technique. Basal I(SC) in bovine oviduct epithelium comprises both chloride secretion and sodium absorption and was inhibited by treatment with basolateral K(+) channel inhibitors tetrapentlyammonium chloride (TPeA) or BaCl(2). Similarly, ATP-stimulated chloride secretion was significantly attenuated by pretreatment with BaCl(2,) tetraethylammonium (TEA), tolbutamide, and TPeA. Basolateral K(+) current, isolated using nystatin-perforation technique, was rapidly activated by ATP(e), and pretreatment of monolayers with thapsigargin or TPeA abolished this ATP-stimulated K(+) current. To further investigate the type of K(+) channel involved in the ATP response in the bovine oviduct, a number of specific Ca(2+)-activated K(+) channel inhibitors were tested on the ATP-induced ΔI(SC) in intact monolayers. Charbydotoxin, (high conductance and intermediate conductance inhibitor), or paxilline, (high conductance inhibitor) did not significantly alter the ATP(e) response. However, pretreatment with the small conductance inhibitor apamin resulted in a 60% reduction in the response to ATP(e). The presence of small conductance family member KCNN3 was confirmed by RT-PCR and immunohistochemistry. Measurements of intracellular calcium using Fura-2 spectrofluorescence imaging revealed the ability of ATP(e) to increase intracellular calcium in a phospholipase C-inositol 1,4,5-trisphosphate pathway-sensitive manner. In conclusion, these results provide strong evidence that purinergic activation of a calcium-dependent, apamin-sensitive potassium conductance is essential to promote chloride secretion and thus fluid formation in the oviduct. 相似文献
20.
The cellular mechanism of active chloride secretion in vertebrate epithelia: studies in intestine and trachea 总被引:3,自引:0,他引:3
S R Shorofsky M Field H A Fozzard 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1982,299(1097):597-607
The cellular mechanism of active chloride secretion, as it is manifested in the intestine and trachea, appears to possess the following elements: (1)NaCl cl-transport across the basolateral membrane; (2) Cl- accumulation in the cell above electrochemical equilibrium due to the Na+ gradient; (3) a basolateral Na+-K+ pump that maintains the Na+ gradient; (4) a hormone-regulated Cl- permeability in the apical membrane; (5) passive Na/ secretion through a paracellular route, driven by the transepithelial potential difference; and (6) an increase in basolateral membrane K+ permeability occurring in conjunction with an increase in Na+-K+ pump rate. Electrophysiological studies in canine trachea support this model. Adrenalin, a potent secretory stimulus in that tissue, increases apical membrane conductance through a selective increase in Cl- permeability. Adrenalin also appears to increase basolateral membrane K+ permeability. Whether or not adrenalin also increases paracellular Na+ permeability is unclear. Some of the testable implications of the above secretion model are discussed. 相似文献