首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monitoring the fluorescence quenching of the pH-sensitive dye Acridine orange, proton accumulation in the presence of an inside-negative transmembrane potential was measured in eel (Anguilla anguilla) intestinal brush-border membrane vesicles. It was demonstrated that the proton accumulation was specifically increased by the presence of the dipeptide glycyl-glycine in the extravesicular space, showing saturation kinetics at increasing dipeptide concentrations and was specifically inhibited by diethylpyrocarbonate. Data reported suggest the presence of an electrical-potential-dependent H+/glycyl-glycine cotransport system in the eel intestinal brush-border membrane vesicles.  相似文献   

2.
We examined the role of pH gradient and membrane potential in dipeptide transport in purified intestinal and renal brush-border membrane vesicles which were predominantly oriented right-side out. With an intravesicular pH of 7.5, changes in extravesicular pH significantly affected the transport of glycyl-L-proline and L-carnosine, and optimal dipeptide transport occurred at an extravesicular pH of 5.5-6.0 in both intestine and kidney. When the extravesicular pH was 5.5, glycyl-L-proline transport was accelerated 2-fold by the presence of an inward proton gradient. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated glycyl-L-proline transport, and the stimulation was observed in the presence and absence of Na+. A carbonyl cyanide p-trifluoromethoxyphenylhydrazone-induced H+ diffusion potential (interior-positive) reduced dipeptide transport. It is suggested that glycyl-L-proline and proton(s) are cotransported in intestinal and renal brush-border membrane vesicles, and that the process results in a net transfer of positive charge.  相似文献   

3.
This study has demonstrated the existence of an L-proline-dependent (Na independent) proton flux at the apical membrane level of the eel intestinal absorbing cells. Using isolated eel enterocytes and the pH-sensitive fluorescent dye 2', 7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF), it was shown that a 20 mM concentration of the imino acid L-proline in the extracellular medium determined an intracellular acidification of approximately 0.28 pH units. However, neither sucrose nor other amino acids were able to significantly acidify the resting intracellular pH. A hyperbolic relationship between extracellular proline concentration and intracellular proton accumulation was observed. Using both isolated brush-border and basolateral membrane vesicles, it was demonstrated that this proline-proton cotransport mechanism was located at the apical membrane level only. In addition, the existence of a coupling mechanism between proline and proton fluxes was demonstrated by the observation that, in brush-border membrane vesicles, the presence of a pH gradient (pH(in) > pH(out)) stimulated the uptake of L-proline.  相似文献   

4.
Summary Brush-border membrane vesicles were isolated from the intestine and kidney of the winter flounder,Pseudopleuronectes americanus, and the transport ofd-glucose,l-alanine and sodium was examined by a rapid filtration technique.d-glucose,l-alanine, and sodium entered the same osmotically reactive space suggesting that uptake into vesicles represents transport across rather than binding to the membrane. d-glucose andl-alanine uptake by intestinal and renal brush-border membrane vesicles was stimulated by sodium as compared to potassium or choline. In the presence of a sodium chloride gradient, overshooting uptake was observed indicating a transient intravesicular accumulation ofd-glucose andl-alanine. The sodium-dependentd-glucose uptake was inhibited by phlorizin andd-galactose while the transport ofl-alanine was inhibited byl-phenylalanine. The sodium-dependent transport ofd-glucose andl-alanine was affected by the electrical potential difference across the vesicle membrane; the addition of valinomycin in the presence of an inwardly directed potassium chloride gradient inhibited sodium-dependent solute uptake, whereas replacing chloride or gluconate with more permeant anions, such as SCN, stimulated uptake. Similar results were obtained with intestinal and renal membranes; they document the presence of sodium/d-glucose and sodium/l-alanine cotransport systems in the brush-border membrane of intestine and kidney.Sodium uptake into brush border membrane vesicles from the flounder intestine and kidney was saturable (tracer replacement) and trans-stimulated (tracer coupling), indicating transport via facilitated diffusion systems. Additionally, sodium uptake was only slightly affected by superimposing diffusion potentials demonstrating that the majority of sodium transport was by electroneutral coupled processes. In both the intestinal and kidney brush-border membrane vesicles sodium uptake was inhibited by an inwardly directed proton gradient suggesting the presence of a sodium/proton exchange mechanism. In intestinal, but not in renal membrane preparations, sodium uptake was stimulated by chloride. Chloride stimulation was abolished after preincubation with furosemide indicating the presence of an additional coupled sodium-chloride transport in the intestinal brush-border membranes.The experiments were carried out at the Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, USAAddress effective February 1, 1980: Albert Einstein College of Medicine, Department of Physiology, 1300 Morris Park Avenue, Bronx, New York 10461, USA  相似文献   

5.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

6.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

7.
Rabbit kidney brush-border membrane vesicles were exposed to bacterial protease which cleaves off a large number of externally oriented proteins. Na+-dependent d-glucose transport is left intact in the protease-treated vesicles. The protease-treated membrane was solubilized with deoxycholate and the deoxycholate-extracted proteins were further resolved by passage through Con A-Sepharose columns. Sodium-dependent d-glucose activity was found to reside in a fraction containing a single protein band of Mr ? 165000 which is apparently a dimer of Mr ? 85 000. When reconstituted and tested for transport, this protein showed Na+-dependent, stereo-specific and phlorizin-inhibitable glucose transport. Transport activity is completely recovered and is 20-fold increased in specific activity. A similar isolate was obtained from rabbit small intestinal brush-border membranes and kidneys from several other species of animals.  相似文献   

8.
H Murer  U Hopfer    R Kinne 《The Biochemical journal》1976,154(3):597-604
Studies on proton and Na+ transport by isolated intestinal and renal brush-border-membrane vesicles were carried out to test for the presence of an Na+/H+-exchange system. Proton transport was evaluated as proton transfer from the intravesicular space to the incubation medium by monitoring pH changes in the membrane suspension induced by sudden addition of cations. Na+ transport was determined as Na+ uptake into the vesicles by filtration technique. A sudden addition of sodium salts (but not choline) to the membrane suspension provokes an acidification of the incubation medium which is abolished by the addition of 0.5% Triton X-100. Pretreatment of the membranes with Triton X-100 prevents the acidification. The acidification is also not observed if the [K+] and proton conductance of the membranes have been increased by the simultaneous addition of valinomycin and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the K+-rich incubation medium. Either valinomycin or carbonyl cyanide p-trifluoromethoxyphenylhydrazone when added alone do not alter the response of the membranes to the addition of Na+. Na+ uptake by brush-border microvilli is enhanced in the presence of a proton gradient directed from the intravesicular space to the incubation medium. Under these conditions a transient accumulation of Na+ inside the vesicles is observed. It is concluded that intestinal and renal brush-border membranes contain a NA+/H+ antiport system which catalyses an electroneutral exchange of Na+ against protons and consequently can produce a proton gradient in the presence of a concentration difference for Na+. This system might be involved in the active proton secretion of the small intestine and the proximal tubule of the kidney.  相似文献   

9.
An inward-directed proton gradient energizes the transport of intact glycylsarcosine against a concentration gradient in rabbit renal brush-border membrane vesicles. Dissipation of the proton gradient abolishes the uphill transport. Generation of an inside-negative membrane potential nearly doubles the intravesicular concentration of the dipeptide at the peak of the overshoot without altering the equilibrium value. These data provide direct evidence for peptide-proton cotransport in the renal brush-border membrane.  相似文献   

10.
The effect of a variety of ions and other solutes on the accumulation of the β-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na1 in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN and NO3) or less permeant (SO42−), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other β-amino acids and in a competitive fashion. d-glucose and p-aminohippurate at high concentrations (> 10−3 M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of d-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal β-amino acid transport system in brush-border vesicles and indicate a role for external Cl in this uptake system.  相似文献   

11.
Experimental hyperglycemia leads to an increase in the capacity of the rat small intestine to absorb glucose. This effect occurs within hours from the onset of hyperglycemia and is thought to involve an induction of glucose transport in the brush-border and/or basolateral membrane of the intestinal epithelium. We devised a protocol for the simultaneous preparation of brush-border vesicles and basolateral vesicles from rat small intestine to determine the locus for the inductioof glucose transporter in hyperglycemic rats. A 6 h period of intravenous infusion with a 30% glucose solution had no effect on the initial rate of glucose uptake across jejunal or ileal brush-border vesicles when measured in the absence of a Na+ gradient, suggesting that enhanced glucose uptake is not dependent on an increase in the number of Na+-dependent secondary active glucose transporters in the brush-border. Hyperglycemia did not effect the rate of glucose uptake across ileal basolateral vesicles but did cause a 78% increase in the initial rate of carrier-mediated d-glucose uptake across jejunal basolateral vesicles. The induction of glucose transport in the jejunal basolateral membrane was characterized by a rapid rate of glucose equilibration across the vesicles (t12 = 46 s sorbitol infused controls, 18 s hyperglycemia) and a 75% increase in the Vmax for carrier-mediated glucose uptake with no significant change in Kt. When the rats were pretreated with cycloheximide prior to intravenous infusion, the initial rate of d-glucose uptake dropped to 13% of that seen in jejunal basolateral vesicles prepared from untreated rats. These results suggest a rapid turnover rate for the Na+-independent glucose transporter in the basolateral membrane of the enterocyte. An increase in the number of functioning glucose transporters in the basolateral membrane may play an important role in the short-term induction of glucose absorption by the jejunum of the hyperglycemic animal.  相似文献   

12.
Using brush-border membrane (BBM) vesicles prepared from the intestine of the European eel, the specificity of L-alanine and L-proline Na+-dependent transport was investigated by measuring the uptake of isotopically labelled substrates. In the presence of Na+ ions, cross-inhibition between alanine and proline transports was observed; in addition alpha-(methylamino)isobutyric acid (MeAIB) inhibited proline but had no effect on alanine uptake. These results can be explained by the presence, in eel intestinal BBM vesicles, of at least two distinct agencies for Na+-dependent proline and alanine translocation. The first system is specific for alanine and short-chain neutral amino acids; the second system, specific for imino acids and the N-methylated analogues, is regulated by alanine concentration.  相似文献   

13.
Brush border membrane vesicles, BBMV, from eel intestinal cells or kidney proximal tubule cells were prepared in a low osmolarity cellobiose buffer. The osmotic water permeability coefficient P f for eel vesicles was not affected by pCMBS and was measured at 1.6 × 10−3 cm sec−1 at 23°C, a value lower than 3.6 × 10−3 cm sec−1 exhibited by the kidney vesicles and similar to published values for lipid bilayers. An activation energy E a of 14.7 Kcal mol−1 for water transport was obtained for eel intestine, contrasting with 4.8 Kcal mol−1 determined for rabbit kidney proximal tubule vesicles using the same method of analysis. The high value of E a , as well as the low P f for the eel intestine is compatible with the absence of water channels in these membrane vesicles and is consistent with the view that water permeates by dissolution and diffusion in the membrane. Further, the initial transient observed in the osmotic response of kidney vesicles, which is presumed to reflect the inhibition of water channels by membrane stress, could not be observed in the eel intestinal vesicles. The P f dependence on the tonicity of the osmotic shock, described for kidney vesicles and related to the dissipation of pressure and stress at low tonicity shocks, was not seen with eel vesicles. These results indicate that the membranes from two volume transporter epithelia have different mechanisms of water permeation. Presumably the functional water channels observed in kidney vesicles are not present in eel intestine vesicles. The elastic modulus of the membrane was estimated by analysis of swelling kinetics of eel vesicles following hypotonic shock. The value obtained, 0.79 × 10−3 N cm−1, compares favorably with the corresponding value, 0.87 × 10−3 N cm−1, estimated from measurements at osmotic equilibrium. Received: 28 January 1999/Revised: 15 June 1999  相似文献   

14.
We investigated the contribution of the Na+/l-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of l-carnitine was observed in the presence of a Na+ gradient. The uptake of l-carnitine was of high affinity (Km=21 μM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for l-carnitine uptake. Therefore, we confirmed the Na+/l-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and l-carnitine uptake. The presence of an outward H+ gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of l-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled l-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na+/l-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H+/organic cation antiporter.  相似文献   

15.
Purified rabbit intestinal brush border membrane vesicles transport glycyl-L-proline into an osmotically responsive intravesicular space by a Na+- independent, carrier-mediated process. With short incubation, transport occurs mostly as the intact dipeptide, followed by hydrolysis. Pretreatment of the vesicles with papain results in a 60% reduction of L-alanine transport while glycyl-L-proline transport is stimulated by 40%. Papain treatment does not change the intravesicular volume, nor does it increase membrane permeability. Dipeptide transport into papain treated vesicles remains completely Na+- independent as it is in the control vesicles. Many dipeptides inhibit glycyl-L-proline transport into papain treated vesicles both in the presence and absence of a Na+ gradient.  相似文献   

16.
Intestinal epithelial membrane transport of L-lactic acid was characterized using rabbit jejunal brush-border membrane vesicles (BBMVs). The uptake of L-[(14)C]lactic acid by BBMVs showed an overshoot phenomenon in the presence of outward-directed bicarbonate and/or inward-directed proton gradients. Kinetic analysis of L-[(14)C]lactic acid uptake revealed the involvement of two saturable processes in the presence of both proton and bicarbonate gradients. An arginyl residue-modifying agent, phenylglyoxal, inhibited L-[(14)C]lactic acid transport by the proton cotransporter, but not by the anion antiporter. The initial uptakes of L-[(14)C]lactic acid which are driven by bicarbonate ion and proton gradients were inhibited commonly by monocarboxylic acids and selectively by anion exchange inhibitor 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid and protonophore carbonylcyanide p-trifluoromethoxyphenylhydrazone, respectively. These observations demonstrate that L-lactic acid is transported across the intestinal brush-border membrane by multiple mechanisms, including an anion antiporter and a previously known proton cotransporter.  相似文献   

17.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

18.
Summary Experiments were performed to determine the presence of a Cl–OH exchange (Cl–H+ cotransport) in the brush-border membranes isolated from the intestinal epithelium of freshwater trout. Determinations of alkaline phosphatase activities have shown that vesicle suspensions had an enrichment factor of about 17 in this enzyme indicating a high degree of purification of the brush-border membrane preparation. Cl uptake by vesicles in the presence of a proton gradient occurs against a concentration gradient with an overshoot ratio of about 2 and is inhibited by SITS. Several lines of evidence suggest that the mechanism involved is electrical in nature: (i) Cl uptake is increased when the proton gradient is increased, but there is a linear relationship between the Cl uptake and the Nernst potential of protons. (ii) Cl uptake is increased when a proton ionophore is added at low concentration and inhibited at high concentration, suggesting that a proton conductance is involved in the Cl uptake. (iii) there is a linear relationship between the initial speed of the uptake of increasing Cl concentrations and the Cl concentration. (iv) Cl uptake can be modulated by different potassium gradients with or without valinomycin. It is concluded that the enterocyte of the freshwater trout is not equipped with a Cl–OH exchange and the Cl uptake by vesicles is realized by a Cl conductance.  相似文献   

19.
Amino acids, a critical energy source for the intestinal epithelial cells, are more efficiently assimilated in the normal intestine via peptide co-transporters such as proton:dipeptide co-transport (such as PepT1). Active uptake of a non-hydrolyzable dipeptide (glycosarcosine) was used as a substrate and PepT1 was found to be present in normal villus, but not crypt cells. The mRNA for this transporter was also found in villus, but not crypt cells from the normal rabbit intestine. PepT1 was significantly reduced in villus cells also diminished in villus cell brush border membrane vesicles both from the chronically inflamed intestine. Kinetic studies demonstrated that the mechanism of inhibition of PepT1 during chronic enteritis was secondary to a decrease in the affinity of the co-transporter for the dipeptide without an alteration in the maximal rate of uptake (Vmax). Northern blot studies also demonstrated unaltered steady state mRNA levels of this transporter in the chronically inflamed intestine. Proton dipeptide transport is found in normal intestinal villus cells and is inhibited during chronic intestinal inflammation. The mechanism of inhibition is secondary to altered affinity of the co-transporter for the dipeptide.  相似文献   

20.
These studies are aimed at characterizing the transport of the tripeptide, glycylglycyl-L-proline (GlyGlyPro) across human jejunal brush-border membrane vesicles. GlyGlyPro (0.65 mM) was hydrolyzed by brush-border membrane vesicles with the extent of hydrolysis per mg protein being 23% at 0.5 min, 57% at 1 min and complete hydrolysis at 60 min. Treatment of the membrane vesicles with gel-complexed papain (to remove membrane peptidases) resulted in minimal hydrolysis of GlyGlyPro up to 10 min of incubation. Measurement of GlyGlyPro influx with papain-treated vesicles in the presence of increasing medium osmolarity showed that uptake occurred into an osmotically reactive intravesicular space. Transport of GlyGlyPro with normal and papain-treated membrane vesicles was similar in the presence of an inward Na+ or K+ gradient. No overshoot phenomenon was observed in the presence of an inward proton gradient (extravesicular pH 5.5; intravesicular pH 7.5). An interior negative membrane potential induced by a K+ diffusion potential in the presence of valinomycin stimulated the uptake of the peptide. The effect of increasing concentrations on initial rates of GlyGlyPro uptake revealed the presence of a saturable component as well as a diffusional component. Preloading the membrane vesicles with 20 mM glycylsarcosylsarcosine stimulated uptake by 4-fold. Uptake of GlyGlyPro was inhibited greater than 50% by dipeptides and tripeptides and less than 15% by free amino acids. These results indicate that GlyGlyPro uptake in jejunal brush-border membrane vesicles is not energized by a Na+ or proton gradient and that transport occurs by carrier-mediated and diffusional processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号