首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activator protein for hydrolysis of cerebroside sulfate by arylsulfatase A was purified from pig kidney in high yield. This protein, also known as sphingolipid activator protein-1 and saposin-B, was particularly rich in pig kidney. Purification was achieved by a simple procedure involving homogenation and heat treatment followed by affinity, ion exchange, and gel filtration chromatographies. The final product was better than 90% pure by gel electrophoresis and HPLC. It was possible to sequence more than 60 amino acids from the N-terminus with only a few uncertain residues. The sequence differed from that predicted for the human protein by about 10%, with most amino acid variations being conservative. There appeared to be a residual glycosyl substituent on asparagine 21, but the sugar content was low and the protein failed to bind to concanavalin A. The cerebroside sulfate activator proved to be exceptionally resistant to denaturation or protease digestion. The apparent molecular mass was approximately 20,000 Da on preparative gel-filtration columns, but was variable when estimated by HPLC gel filtration. Values ranging from 30,000 to over 100,000 Da were observed in neutral buffers, while values around 15,000-16,000 Da were seen in acidic buffers such as those used for assay of the biological activity. This was further decreased to a putative subunit of 7000-8000 Da under severe denaturing conditions. Pig kidney is a convenient source for the large-scale preparation of this interesting protein which has heretofore been obtained from human sources.  相似文献   

2.
Cerebroside sulfate activator (CSAct) protein is exceptionally resistant to heat denaturation and proteolytic digestion. Although water soluble the protein binds membrane-associated lipids. Its biological role is thought to be to transfer certain lipids between membranes and to facilitate their catabolism in the lysosomes. An example of the latter is the removal of the sulfate group from cerebroside sulfate by arylsulfatase A. The mechanism of lipid sequestration from membranes and presentation of the lipid-protein complex to catabolic enzymes is a crucial aspect of the function of this protein. The widespread occurrence of the protein class of which CSAct is one of the best known members underscores the significance of this protein. The preparation, purification and chemical and biological properties of a stable disulfide blocked derivative of CSAct is described. The pyridoethylated protein was susceptible to tryptic attack and devoid of a significant population of solvent-protected exchange resistant protons. It apparantly formed a CS complex. However, unlike the complex with the native protein, this was not sufficiently stable to remain intact during size exclusion chromatography. The disulfide-blocked protein had a similar CD spectrum as native protein, indicating similar alpha-helical content. Unexpectedly, the activities of disulfide-blocked protein in the arylsulfatse A catalyzed sulfate hydrolysis from cerebroside sulfate were substantial. Hitherto, it had been assumed that the disulfide connectivities were essential for the protein to maintain a correctly folded configuration to bind lipid ligands and potentiate their hydrolysis. Some revision of our thoughts on the importance of the disulfide connectivities in the structure and function of the protein are necessary.  相似文献   

3.
The organization of 14 exons covering 97% of the cDNA sequence of human cerebroside sulfate activator protein precursor has been determined from two overlapping EMBL-4 human genomic clones extending over 17kb. All exons and exon/intron splice junctions and five introns were sequenced. Exon 8 consists of only 9 bp and is involved in alternative splicing which generates three different mRNAs of cerebroside sulfate activator precursor.  相似文献   

4.
Fluorescent derivatives of cerebroside sulfate (sulfogalactosyl ceramide, sulfatide) containing long-wavelength-emission fluorophores were synthesized. For this purpose a procedure was developed for preparing a cerebroside 3-sulfate derivative with an amino group on the terminal carbon atom of its fatty acyl residue. The latter compound has been used to prepare cerebroside 3-sulfate, coupled to lissamine-rhodamine, fluoresceine, eosine and NBD. The spectroscopic properties of these compounds, in different solvent systems and when incorporated into micelles of a non-ionic detergent or liposomes of a phospholipid, are reported. Incubation of these respective sulfatides with a human leukocyte preparation, resulted in the formation of the corresponding fluorescent cerebrosides.  相似文献   

5.
Urine specimens from two sibs affected with cerebroside sulfatase activator deficiency were examined to ascertain whether the deficiency of the supplementary activator protein required for the enzymatic hydrolysis of cerebroside sulfate was also evident in urine. Material from chromatographic fractionations was examined for the activator activity to avoid ambiguities resulting from protein inhibition. There were substantial deficits in all chromatographic fractions corresponding to activator-containing fractions of control urines. Since patient urines contained elevated amounts of lactosylceramide, digalactosylceramide, and globotriaosylceramide and since similarities between activators for cerebroside sulfate and GM1 ganglioside hydrolyses had been noted previously, the chromatographic fractions were also examined for activators in other glycosphingolipid hydrolase systems. There was coincidence of activators for the GM1 ganglioside/beta-galactosidase and the globotriaosylceramide/alpha-galactosidase A reactions with the cerebroside sulfatase activator in control urine fractions, and the patients' urines were deficient in activator activities for the three reactions. Identity of the three activators was suggested and antiserum to purified GM1 ganglioside activator was used to test this possibility. There were depressed levels of cross-reacting material in fractions of patient urines by Ouchterlony double diffusion and in unfractionated urine by enzyme-linked immunosorbent assay. Purified activators for the cerebroside sulfate and GM1 ganglioside systems showed lines of identity with no spurring on Ouchterlony double diffusion, identical mobility on immunoelectrophoresis, and similar stimulatory activities toward hydrolysis of the three glycosphingolipid species by their respective enzymes. Finally, the three activator activities were retained by anti-GM1-activator IgG coupled to Sepharose 4B. The results suggest strongly that the same protein entity serves as activator for the enzymatic hydrolysis of cerebroside sulfate, GM1 ganglioside, and globotriaosylceramide.  相似文献   

6.
The effect of myelin basic protein on the myelin lipid cerebroside sulfate was studied by differential scanning calorimetry and use of the fatty acid spin label, 16-S-SL, in order to determine (i) the effect of basic protein on the metastable phase behavior experienced by this lipid, and (ii) to determine if basic protein perturbs the lipid packing as it does with some acidic phospholipids. The effects of basic protein on the thermodynamic parameters of the lipid phase transition were compared with those of polylysine which has an ordering effect on acidic phospholipids as a result of its electrostatic interactions with the lipid head groups. Different synthetic species of cerebroside sulfate of varying fatty acid chain length and with and without a hydroxy fatty acid were used. The non-hydroxy fatty acid forms of cerebroside sulfate undergo a transition from a metastable to a more ordered stable state while the hydroxy fatty acid forms remain in the metastable state at the cation concentration used in this study (0.01 M Na+ or K+). The non-hydroxy fatty acid forms were still able to go into a stable state in the presence of both basic protein and polylysine. At low concentrations, basic protein increased the rate of the transition to the stable state, while polylysine decreased it for the longest chain length form studied. However, at high concentrations, basic protein probably prevented formation of the stable state. The hydroxy fatty acid forms did not go into the stable state in the presence of basic protein and polylysine. It is argued that the increased rate of formation of the stable state in the presence of basic protein and decreased rate in the presence of polylysine are consistent with interdigitation of the lipid acyl chains in the stable state. Basic protein also had a small perturbing effect on the lipid. It decreased the total enthalpy of the lipid phase transition. When added to the non-hydroxy fatty acid forms it increased the temperature of the liquid crystalline to metastable phase transition and decreased the temperature of the stable to liquid crystalline phase transition. It significantly decreased the transition temperature of the hydroxy fatty acid forms but only a portion of the lipid was affected. In contrast, polylysine increased the transition temperature of the metastable and stable states of all forms of cerebroside sulfate but had a greater effect on the non-hydroxy fatty acids forms than on the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Two fluorescent derivatives of cerebroside sulfate ('sulfatide') have been synthesized and used as substrates for determining arylsulfatase A activity. These were 12-(1-pyrene)dodecanoyl cerebroside sulfate (P12-sulfatide) and 12(1-pyrenesulfonylamido)dodecanoyl cerebroside sulfate (PSA12-sulfatide). When incubated at pH 5.0 in the presence of 5 mM MnCl2 and 5.5 mM of taurodeoxycholate, either substrate was hydrolyzed by arylsulfatase A of human leukocytes. The rate of hydrolysis was proportional to the incubation time and concentration of enzyme; Michaelis-Menten type kinetics were observed with increasing concentrations of substrate. For determining the rate of hydrolysis, each of the two products (i.e., P12- and PSA12-cerebrosides) were separated from the bulk of respective unreacted sulfatide on small columns of DEAE-Sephadex A-25 and their fluorescence intensities read at 343-378 and 350-380 nm for the excitation and emission wavelengths for P12- and PSA12-cerebrosides, respectively. When extracts of skin fibroblasts derived from normal individuals and patients with Maroteaux-Lamy (lacking arylsulfatase B) or metachromatic leukodystrophy (lacking arylsulfatase A) were used as source of enzyme, P12-sulfatide was hydrolyzed by the former two but not by the latter cell extract. Several derivatives of cerebroside sulfate were also synthesized and found to inhibit the hydrolysis of pyrenesulfatide by leukocyte arylsulfatase A. The results demonstrate that these two pyrene containing sulfatides can be effectively used as specific substrates for the determination of arylsulfatase A activity in extract of cells and most probably also of tissues.  相似文献   

8.
Summary Several cases of metachromatic leukodystrophy (MLD) have been described with normal or near normal activities of arylsulfatase A (cerebroside sulfatase). However, the ability of intact cultured fibroblasts to hydrolyze cerebroside sulfate was impaired. Since the impairment was corrected by cerebroside sulfatase activator, a deficiency of activator was implied. In the absence of direct demonstration of deficiency, other types of evidence were needed to support the premise that the genetic defect was not associated with the arylsulfatase A locus as in classical MLD. Therefore, somatic cell hybrids of activator deficiency and MLD fibroblasts were analyzed. Complementation was indicated by enhanced hydrolysis of cerebroside sulfate, supporting the view that cerebroside sulfatase activator deficiency and MLD are nonallelic.  相似文献   

9.
1) An activator protein necessary for the enzymic hydrolysis of cerebroside sulphate could be partially purified from unfractionated rat liver. This activator, which is similar to that of human origin, proved to be a heat-stable, non-dialyzable, low molecular weight protein with an isoelectric point of 4.1. Its activity could be destroyed by pronase. 2) For elucidation of the subcellular localization of the activator, rat liver was fractionated by differential centrifugation. The intracellular distribution of the cerebroside sulphatase activator was compared to the distribution patterns of marker enzymes for different cell organelles and found to coincide with the lysosomal arylsulphatase, thus indicating a lysosomal localization. 3) This was confirmed using highly purified secondary, i.e. iron-loaded, lysosomes. After disruption by osmotic shock, these organelles hydrolyzed cerebroside sulphate when incubations were performed under physiological conditions with endogenous as well as exogenous sulphatase A as enzyme. 4) After subfractionation of the disrupted secondary lysosomes into membrane and lysosol fractions by high speed centrifugation, it was found that the activator protein was exclusively associated with the lysosol, whereas the acid hydrolases were distributed differently between the two fractions. 5) The lysosol was further fractionated by semi-preparative electrophoresis on polyacrylamide gels. Two protein fractions were obtained: a high molecular weight fraction, containing the activator-free acid hydrolases, and a low molecular weight fraction, containing the enzyme-free activator of cerebroside sulphatase. 6) The significance of these findings for the hydrolysis of sphingolipids in the lysosomes is discussed.  相似文献   

10.
1. Sulphatase A (cerebroside sulphatase) (EC 3.1.6.1.) and a 12-fold excess of its physiological activator protein were chromatographed together on Sephadex G-75. The elution buffer was the same as that used in the enzymic degradation of sulphatides. The two proteins were eluted in different peaks indicating that no stable complex formed. 2. Activator protein was incubated with sulphatides under conditions used favouring the sulphatase activity. Incubation solutions were then examined by electrophoresis on a polyacrylamide gel gradient. An one-to-one complex between activator and sulphatides was observed. Half maximal binding occurred with 2.5 nmol of sulphatides together with 1 or 2 nmol of activator in 100 micronl. 3. Cerebrosides as the enzymic degradation products of sulphatides, bind also to the activator protein. A ratio of one-to-one could possibly be obtained at high cerebroside concentrations. The binding to cerebrosides is less specific than that to sulphatides. A 7-fold excess of cerebrosides was necessary for half maximal binding. 4. In a mixture of sulphatides and cerebrosides the formation of the complex with the activator protein is partly inhibited. The total amount of bound lipids changed as the composition of the lipid mixture was varied. In a one-to-one mixture of the two lipids 60% of the total bound lipids are sulphatides and 40% are cerebrosides.  相似文献   

11.
1) A heat-stable activator of human sulphatase A (cerebroside sulphatase) was purified from human liver. It is required for the enzymatic degradation of cerebroside sulphates (sulphatides) in buffers (ionic strength greater than or equal 0.2) with osmolarity in the physiological range. 2) The purification steps involve extraction, acetone precipitation, heat treatment, isoelectric focusing and gel filtration. 3) Based on the definition of a specific activator unit, the purification of the final preparation was approximately 2000-fold over the acetone precipitation and several thousand-fold in the overall procedure. 4) The purified activator migrated as a single protein band when subjected to gel electrophoresis. Its effect was abolished after treatement with pronase E. The apparent molecular weight as determined by gel filtration was 21 500 +/- 1500; the isoelectric point was 4.3. 5) The activating effect of this protein factor and of taurodeoxycholate on cerebroside sulphatase activity was compared on a weight and molar basis.  相似文献   

12.
A mass spectrometric method is described for monitoring cerebrosides in the presence of excess concentrations of alkali metal salts. This method has been adapted for use in the assay of arylsulfatase A (ASA) and the cerebroside sulfate activator protein (CSAct or saposin B). Detection of the neutral glycosphingolipid cerebroside product was achieved via enhancement of ionization efficiency in the presence of lithium ions. Assay samples were extracted into the chloroform phase as for the existing assays, dried, and diluted in methanol-chloroform-containing lithium chloride. Samples were analyzed by electrospray ionization mass spectrometry with a triple quadrupole mass spectrometer in the multiple reaction monitoring tandem mass spectrometric mode. The assay has been used to demonstrate several previously unknown or ambiguous aspects of the coupled ASA/CSAct reaction, including an absolute in vitro preference for CSAct over the other saposins (A, C, and D) and a preference for the non-hydroxylated species of the sulfatide substrate over the corresponding hydroxylated species. The modified assay for the coupled ASA/CSAct reaction could find applicability in settings in which the assay could not be performed previously because of the need for radiolabeled substrate, which is now not required.  相似文献   

13.
Circular dichroism was used as a probe for competitive binding of two opioid peptides, dynorphin-(1-13) and beta-endorphin, with cerebroside sulfate, a membrane lipid thought to be part of the morphine receptor complex. The rationale was that bound beta-endorphin is partially helical but bound dynorphin-(1-13) remains unordered, thus making it possible to detect the degree of binding of beta-endorphin. The addition of dynorphin-(1-13) to a cerebroside sulfate solution of beta-endorphin invariably displaced beta-endorphin from the peptide-lipid complex, but the addition of beta-endorphin had little effect on dynorphin-(1-13) bound to the lipid. Similar results were obtained for competitive binding of the two peptides with two other amphiphiles, sodium dodecyl and decyl sulfate. The maximum number of binding sites on dynorphin-(1-13) and beta-endorphin was between five and six, which coincides with the five positively charged side chains plus an alpha NH+3 group at the NH2 terminus on both peptide molecules. The results support our working hypothesis that dynorphin-(1-13) may displace beta-endorphin bound to the receptor, which in turn can account for the inhibition of beta-endorphin-induced analgesia by dynorphin-(1-13).  相似文献   

14.
H H Loh  T M Cho  Y C Wu  R A Harris  E L Way 《Life sciences》1975,16(12):1811-1817
Cerebroside sulfate was shown to bind etorphine and levorphanol with high affinity. The relative potency of narcotic analgesics in preventing the binding of levorphanol to cerebroside sulfate correlated well with their reported analgetic activity. The data indicate similarities between cerebroside sulfate and a purified opiate receptor from mouse brain which has been reported to be a proteolipid. Some preliminary animal data also imply the involvement of CS in opiate action We, therefore, propose that CS may serve as a useful “receptor” model for the study of opiate-receptor interaction in vitro.  相似文献   

15.
The two glycosphingolipids galactosylceramide (GalC) and its sulfated form, cerebroside sulfate (CBS), are present at high concentrations in the multilayered myelin sheath and are involved in carbohydrate-carbohydrate interactions between the lipid headgroups. In order to study the structure of the complex of these two glycolipids by Fourier transform infrared (FTIR) spectroscopy, GalC dispersions were combined with CBS dispersions in the presence and absence of Ca(2+). The FTIR spectra indicated that a strong interaction occurred between these glycolipids even in the absence of Ca(2+). The interaction resulted in dehydration of the sulfate, changes in the intermolecular hydrogen bonding interactions of the sugar and other oxygens, decreased intermolecular hydrogen bonding of the amide C==O of GalC and dehydration of the amide region of one or both of the lipids in the mixture, and disordering of the hydrocarbon chains of both lipids. The spectra also show that Ca(2+) interacts with the sulfate of CBS. Although they do not reveal which other groups of CBS and GalC interact with Ca(2+) or which groups participate in the interaction between the two lipids, they do show that the sulfate is not directly involved in interaction with GalC, since it can still bind to Ca(2+) in the mixture. The interaction between these two lipids could be either a lateral cis interaction in the same bilayer or a trans interaction between apposed bilayers. The type of interaction between the lipids, cis or trans, was investigated using fluorescent and spin-label probes and anti-glycolipid antibodies. The results confirmed a strong interaction between the GalC and the CBS microstructures. They suggested further that this interaction caused the CBS microstructures to be disrupted so that CBS formed a single bilayer around the GalC multilayered microstructures, thus sequestering GalC from the external aqueous phase. Thus the CBS and GalC interacted via a trans interaction across apposed bilayers, which resulted in dehydration of the headgroup and interface region of both lipid bilayers. The strong interaction between these lipids may be involved in stabilization of the myelin sheath.  相似文献   

16.
Saposin B (also known as cerebroside sulfate activator or CSAct) is a small non-enzymatic glycoprotein required for the breakdown of cerebroside sulfates (sulfatides) in lysosomes. Saposin B contains three intramolecular disulfide bridges, exists as a dimer and is remarkably heat, protease, and pH stable. We have expressed the protein in a thioredoxin reductase deficient strain of Escherichia coli and purified the protein by heat treatment, followed by ion-exchange, gel filtration, and hydrophobic interaction chromatographies. The protein is properly folded as judged by the observed disulfide bond topology, the hydrogen-deuterium exchange rate, and the level of stimulation of sulfatide hydrolysis by arylsulfatase A. Crystals of human saposin B were grown by vapor diffusion and diffract to a resolution of 2.2A. Despite obtaining only merohedrally twinned P3(1) native crystals, an untwined seleomethionine-substituted crystal belonging to space group P3(1)21 was also grown. The three-dimensional structure of saposin B protein will provide insights into how this 79 amino acid protein is able to solubilize relatively large membrane-bound lipid ligands.  相似文献   

17.
The reactivity of the acidic glycolipid cerebroside sulfate (CBS) with antibody was studied as a function of its lipid environment in vesicles and of its ceramide composition. The lipid environment was varied by using phosphatidylcholine of varying chain length with cholesterol in a phosphatidylcholine:cholesterol:cerebroside sulfate molar ratio to glycolipid of 1:0.75:0.1. The ceramide structure of CBS was varied by using synthetic forms containing palmitic acid, lignoceric acid, or the corresponding alpha-hydroxy fatty acids. Reactivity with antibody was determined by measuring complement-mediated lysis of the vesicles containing a spin-label marker, tempocholine chloride. The data were analyzed by a theoretical model which gives relative values for the dissociation constant and concentration of antibodies within the antiserum which are able to bind to the glycolipid. If the phosphatidylcholine chain length was increased, increasing the bilayer thickness, only a small population of high-affinity antibodies were able to bind to cerebroside sulfate, suggesting decreased surface exposure of the glycosyl head group. A larger population of lower affinity antibodies were able to bind to it in a shorter chain length phosphatidylcholine environment. However, if the chain length of the cerebroside sulfate was increased, it could be recognized by more antibodies of lower affinity than the short chain length form, suggesting that an increase in chain length of the glycolipid increased surface exposure. Hydroxylation of the fatty acid inhibited antibody binding; only a smaller population of higher affinity antibodies was able to bind to the hydroxy fatty acid forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A method for the synthesis of sugar sulfates is described which, unlike the methods in general use, involves incorporation of the sulfate function in the form of a protected organosulfate. For example, the reaction of phenyl chlorosulfate with 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose afforded the 3-(phenyl sulfate) of the latter in high yield. Deprotection, to obtain the 3-sulfate derivative, was readily effected by catalytic hydrogenolysis. As the (phenyl sulfate) substituent is relatively stable under a variety of conditions, it would be expected to survive an array of chemical transformations made on esterified sugars, or derivatives. Also, it is more compatible with general synthetic and purification procedures than an ionic sulfate group. For these reasons, the (phenyl sulfate), or analogous organosulfate, substituent should be particularly well suited to the synthesis of complex sulfates, including those of higher saccharides.  相似文献   

19.
A precipitin effect has been observed with mixtures of cerebroside sulfate and the neuropeptide substnace P. This phenomenon is attributed to multivalency of the lipid due to its existence in micellar form, and to bivalency of substance P. One of those neuropeptide sites is almost certainly the basic residue(s) located at the N-terminal of substance P, whereas the hydrophobic residues at the C-terminus are suggested as candidates for the other site on the basis of turbidimetric, circular dichroic, and fluorometric studies. An intrinsic association constant of 3.6 x 10(4)M-1 has been obtained from the cerebroside sulfate concentration associated with maximal turbidity of mixtures containing a fixed concentration of the neuropeptide.  相似文献   

20.
Cerebrosides, compounds categorized as glycosphingolipids, were found to occur in a wide range of phytopathogens as novel elicitors and to induce the effective disease resistance for rice plants in our previous study. Here, we showed that cerebroside elicitors lead to the accumulation of phytoalexins and pathogenesis-related (PR) protein in cell suspension cultures of rice with the structural specificity similar to that for the rice whole plants. This elicitor activity of the cerebroside was greater than jasmonic acid (JA) and chitin oligomer (which is known to be an elicitor for cell suspension cultures of rice). Treatment of cell suspension cultures with cerebroside and chitin oligomer resulted in a synergetic induction of phytoalexins, suggesting that cerebroside and carbohydrate elicitors, such as glucan and chitin elicitor, enhance the defense signals of rice in vivo. Induction of phytoalexins by the treatment with cerebroside elicitor was markedly inhibited by LaCl(3) and GdCl(3), Ca(2+ )channel blockers. It is possible that Ca(2+) may be involved in the signaling pathway of elicitor activity of cerebroside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号