首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two somatostatin analogues, [99mTc]Demotide and [99mTc]Demotate 4, were compared with [99mTc]Demotate 1, a previously reported somatostatin receptor subtype 2 (sst2) targeting tracer. Conjugates were prepared by coupling an open‐chain tetraamine chelator to D ‐Phe1 of [Tyr3]‐octreotide or [Tyr3]‐octreotate, respectively, via a p‐benzylaminodiglycolic acid spacer adopting solid‐phase peptide synthesis techniques. Peptide conjugates were collected in a highly pure form after chromatographic purification. Eventually, [99mTc]Demotide and [99mTc]Demotate 4 were obtained in ~1 Ci/µmol specific activity and >96% purity after labeling under alkaline conditions. Demotide and Demotate 4 exhibited similar high binding affinities for the sst2 expressed in AR4‐2J cells with IC50 values 0.16 and 0.10 nM, respectively. The (radio)metallated analogues [99mTc]Demotide and [99mTc]Demotate 4 showed equally high affinities to the sst2 during saturation binding assays in AR4‐2J cell membranes (Kds 0.08 and 0.07 nM, respectively). During incubation at 37 °C with AR4‐2J cells, the radiopeptides internalized effectively via a receptor‐mediated process, with [99mTc]Demotate 4 exhibiting a faster internalization rate than [99mTc]Demotide. After injection in athymic mice bearing sst2‐expressing AR4‐2J tumors, the radiotracers showed high and specific uptake in the tumor (>25%ID/g at 1 h) and in the sst2–positive organs. However, both [99mTc]Demotide and [99mTc]Demotate 4 showed unfavorably higher background activity, especially in the abdomen, in comparison to [99mTc]Demotate 1 and are, therefore, less suited than [99mTc]Demotate 1 for sst2‐targeted tumor imaging in man. Copyright © 2005 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
We have designed (S)-(5-(azetidin-2-ylmethoxy)pyridine-3-yl)methyl cyclopentadienyltricarbonyl technetium carboxylate ([99mTc]CPTT–A–E) with high affinity for nicotinic acetylcholine receptors (nAChRs) using (2(S)-azetidinylmethoxy)-pyridine (A-85380) as the lead compound to develop a Tc-99m-cyclopentadienyltricarbonyl-technetium (99mTc)-labeled nAChR imaging probe. Because technetium does not contain a stable isotope, cyclopentadienyltricarbonyl rhenium (CPTR) was synthesized by coordinating rhenium, which is a homologous element having the same coordination structure as technetium. Further, the binding affinity to nAChR was evaluated. CPTR–A–E exhibited a high binding affinity to nAChR (Ki = 0.55 nM). Through the radiosynthesis of [99mTc]CPTT–A–E, an objective compound could be obtained with a radiochemical yield of 33% and a radiochemical purity of greater than 97%. In vitro autoradiographic study of the brain exhibited that the local nAChR density strongly correlated with the amount of [99mTc]CPTT–A–E that was accumulated in each region of interest. Further, the in vivo evaluation of biodistribution revealed a higher accumulation of [99mTc]CPTT–A–E in the thalamus (characterized by the high nAChR density) when compared with that in the cerebellum (characterized by the low nAChR density). Although additional studies will be necessary to improve the uptake of [99mTc]CPTT–A–E to the brain, [99mTc]CPTT–A–E met the basic requirements for nAChR imaging.  相似文献   

3.
In developing new ligands as potential brain and heart perfusion imaging agents two ligands based upon N2S2 donor atoms with the biphenyl backbone were synthesized. Biphenyl-2,2′-bis(N-1-amino-2-methyl-propane-2-thiol) (BP-BAT-TM) and biphenyl-2,2′-bis(N-1-amino-2-ethyl-butane-2-thiol) (BP-BAT-TE) form stable, neutral and lipid soluble complexes with [99mTc]pertechnetate in the presence of tin(II) tartarate as a reducing agent. The [99mTc]BP-BAT-TM complex penetrates the blood-brain barrier following i.v. injection into rats. Washout from the brain is fast, indicating no retention. The biodistribution of [99mTc]BP-BAT-TE in rats showed an intitial heart uptake (0.8% /organ, at 2 min) and a slow washout (0.74% at 15 min). No brain uptake was found (0.05%). Significant uptake and retention in liver was observed. An imaging study of [99mTc]BP-BAT-TE in a monkey showed no brain uptake and a clear indication of liver uptake and gall bladder clearance. These results indicate that this ligand system may be suitable as the basic core structure for the development of new imaging agents. Further studies with structural variations in the biphenyl backbone are warranted to develop new 99mTc imaging agents for clinical applications.  相似文献   

4.
Angiogenesis imaging agents for single photon emission computed tomography (SPECT) play a role in diagnosing tumor-induced angiogenesis as well as tumor metastasis. We synthesized and evaluated radiolabeled RGD glycopeptides by incorporation of the [99mTc(CO)3(H2O)3]+. 99mTc labeled glucosamino-D-c(RGDfK) ([99mTc]2) was prepared in 90–93% radiochemical yields (decay corrected). In vitro cell binding assays demonstrated selective binding [99mTc]2 to human umbilical vein endothelial (HUVE) cells, with inhibition of binding to 37.3% of control levels by 10 μM of cold authentic compounds. In addition, [99mTc]2 was shown to have high binding affinity to purified αvβ3 integrin (IC50 = 1.5 nM). These results suggest that these radiolabeled RGD glycopeptides may have value for non-invasive assessment of angiogenesis.  相似文献   

5.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

6.
The somatostatin receptor subtype 2 (SSTR2) is often highly expressed on neuroendocrine tumors (NETs), making it a popular in vivo target for diagnostic and therapeutic approaches aimed toward management of NETs. In this work, an antagonist peptide (sst2-ANT) with high affinity for SSTR2 was modified at the N-terminus with a novel [N,S,O] bifunctional chelator (2) designed for tridentate chelation of rhenium(I) and technetium(I) tricarbonyl cores, [Re(CO)3]+ and [99mTc][Tc(CO)3]+. The chelator-peptide conjugation was performed via a Cu(I)-assisted click reaction of the alkyne-bearing chelator (2) with an azide-functionalized sst2-ANT peptide (3), to yield NSO-sst2-ANT (4). Two synthetic methods were used to prepare Re-4 at the macroscopic scale, which differed based on the relative timing of the click conjugation to the [Re(CO)3]+ complexation by 2. The resulting products demonstrated the expected molecular mass and nanomolar in vitro SSTR2 affinity (IC50 values under 30?nM, AR42J cells, [125I]iodo-Tyr11-somatostatin-14 radioligand standard). However, a difference in their HPLC retention times suggested a difference in metal coordination modes, which was attributed to a competing N-triazole donor ligand formed during click conjugation. Surprisingly, the radiotracer scale reaction of [99mTc][Tc(OH2)3(CO)3]+ (99mTc; t½?=?6?h, 141?keV γ) with 4 formed a third product, distinct from the Re analogues, making this one of the unusual cases in which Re and Tc chemistries are not well matched. Nevertheless, the [99mTc]Tc-4 product demonstrated excellent in vitro stability to challenges by cysteine and histidine (≥98% intact through 24?h), along with 75% stability in mouse serum through 4?h. In vivo biodistribution and microSPECT/CT imaging studies performed in AR42J tumor-bearing mice revealed improved clearance of this radiotracer in comparison to a similar [99mTc][Tc(CO)3]-labeled sst2-ANT derivative previously studied. Yet despite having adequate tumor uptake at 1?h (4.9% ID/g), tumor uptake was not blocked by co-administration of a receptor-saturating dose of SS-14. Aimed toward realignment of the Re and Tc product structures, future efforts should include distancing the alkyne group from the intended donor atoms of the chelator, to reduce the coordination options available to the [M(CO)3]+ core (M?=?Re, 99mTc) by disfavoring involvement of the N-triazole.  相似文献   

7.
We report the design, synthesis and biological evaluation of a novel 99mTc 4-(4-cyclohexylpiperazine-1-yl)-butan-1-one-1-cyclopentadienyltricarbonyl technetium ([99mTc]5) as a potential SPECT tracer for imaging of σ2 receptors in tumors. [99mTc]5 was prepared in 25 ± 5% isolated radiochemical yield with radiochemical purity of >99% via double-ligand transfer (DLT) reaction from the ferrocene precursor 2b (4-(4-cyclohexylpiperazine-1-yl)-1-ferrocenylbutan-1-one). The corresponding Re-complex 4 and the ferrocenyl complex 2b showed relatively high affinity towards σ2 receptors in in vitro competition binding assay (Ki values of 4 and 2b were 64.4 ± 18.5 nM and 43.6 ± 21.3 nM, respectively) and moderate to high selectivity versus σ1 receptors (Kiσ1/Kiσ2 ratios were 12.5 and 95.5, respectively). The log D value of [99mTc]5 was determined to be 2.52 ± 0.33. Biodistribution studies in mice revealed comparably high initial brain uptake of [99mTc]5 and slow washout. Administration of haloperidol 5 min prior to injection of [99mTc]5 significantly reduced the radiotracer uptake in brain, heart, lung, and spleen by 40–50% at 2 h p.i.. Moreover, [99mTc]5 showed high uptake in C6 glioma cell lines (8.6%) after incubation for 1 h. Blocking with haloperidol to compete with [99mTc]5 significantly reduced the cell uptake. Preliminary blocking study in C6-brain-tumor bearing rats showed that [99mTc]5 binds to σ receptors in the brain-tumor specifically. These results are encouraging for further exploration of 99mTc-labeled probes for σ2 receptor tumor imaging in vivo.  相似文献   

8.
A kit has been developed to instantly prepare 99mTc(V)—DMSA. The freeze-dried kit consisting of DMSA, stannous chloride and ascorbic acid in appropriate proportions, produces quality 99mTc(V)—DMSA when mixed with 0.2 mL of 3.5% NaHCO3 solution and 2–4 mL of [99mTc] pertechnetate. The radiopharmaceutical characterized by chromatography with ITLC-SG in 0.9% saline and horizontal paper electrophoresis in 50 mM vernol buffer, pH 8.6, at a potential gradient of 15 V/cm showed a different mobility with respect to 99mTc(III)-DMSA, a known agent for kidney imaging. The new agent exhibited less plasma protein binding as compared to that of 99mTc(III)-DMSA. Biodistribution of the pentavalent DMSA in mouse demonstrated greater uptake in bone and muscle and lower uptake in liver and kidney with respect to trivalent DMSA. The soft tissue tumour specificity and its suitability for tumour scintigraphy was apparent from the scintigrams of mammary carcinoma in a C3H Jax mouse and medullary carcinoma in a patient. Brain metastatic lesions were also visible in a breast carcinoma patient after administering him with the agent.  相似文献   

9.
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting 99mTc-tricarbonyl complexes that are cationic or lack a charge, no anionic 99mTc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic 99mTc-tricarbonyl complex ([99mTc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [99mTc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [99mTc]TMCE was 12–17%, with a radiochemical purity greater than 98% after HPLC purification. [99mTc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [99mTc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes.  相似文献   

10.
The biological behaviour of complexes of 99mTc with aminopolycarboxylic and aminocarbohydroxamic ligands EDTA (ethylenediaminetetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), EDTAH (ethylenediaminetetraacetohydroxamic acid) and HIDAmH (N-2-hydroxyethyl-N-carboxymethyl-aminoacetohydroxamic acid) was studied in rabbits. The pharmacokinetic parameters determined in intact rabbits were compared with the results obtained in the study of renal and hepatic clearance of the complexes under study. Hepatobiliary excretion, which in [99mTc]EDTA forms 20–30% of the total excreted amount, is of negligible magnitude in the other 99mTc-complexes studied (<2%). Their renal clearance is not influenced by the inhibition of tubular secretion with probenecid. Binding to plasma proteins increases in the order [99mTc]DTPA < [99mTc]EDTA <[99mTc]HIDAmH <[99mTc]EDTAH and the elimination half-life increases in the same order. The value of renal clearance of the complexes studied related to inulin clearance correlates well with the fraction of the free drug in the plasma. In rabbits the complexes under study are excreted mainly by the mechanism of glomerular filtration in the kidney.  相似文献   

11.
A new azido derivative of 2,2′-dipicolylamine (Dpa), 2-azido-N,N-bis((pyridin-2-yl)methyl)ethanamine, (Dpa-N3) was readily prepared from the known 2-(bis(pyridin-2-ylmethyl)amino)ethanol (Dpa-OH). It was demonstrated that Dpa-N3 could be efficiently labeled with both [Re(CO)3(H2O)3]Br and [99mTc(H2O)3(CO)3]+ to give [Re(CO)3(Dpa-N3)]Br and [99mTc(CO)3(Dpa-N3)]+, respectively. Furthermore, Dpa-N3 was successfully coupled, on the solid phase, to a Peptide Nucleic Acid (PNA) oligomer (H-4-pentynoic acid-spacer-spacer-tgca-tgca-tgca-Lys-NH2; spacer = -NH-(CH2)2-O-(CH2)2-O-CH2-CO-) using the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (Cu-AAC, often referred to as the prototypical “click” reaction) to give the Dpa-PNA oligomer. Subsequent labeling of Dpa-PNA with [99mTc(H2O)3(CO)3]+ afforded [99mTc(CO)3(Dpa-PNA)] in radiochemical yields > 90%. Partitioning experiments in a 1-octanol/water system were carried out to get more insight on the lipophilicity of [99mTc(CO)3(Dpa-N3)]+ and [99mTc(CO)3(Dpa-PNA)]. Both compounds were found rather hydrophilic (log Do/w values at pH = 7.4 are −0.50: [99mTc(CO)3(Dpa-N3)]+ and −0.85: [99mTc(CO)3(Dpa-PNA)]. Biodistribution studies of [99mTc(CO)3(Dpa-PNA)] in Wistar rats showed a very fast blood clearance (0.26 ± 0.1 SUV, 1 h p.i.) and modest accumulation in the kidneys (5.45 ± 0.45 SUV, 1 h p.i.). There was no significant activity in the thyroid and the stomach, demonstrating a high in vivo stability of the 99mTc-labeled Dpa-PNA conjugate.  相似文献   

12.
A simple procedure for the preparation of 99mTc—carbonyl complexes of dithiocarbamates in high yield and radiochemical purity has been developed and used for the preparation of 99mTc—carbonyl complexes of bis(2-hydroxyethyl)dithiocarbamate and bis(2-hydroxypropyl)dithiocarbamate. These complexes were found to be extremely stable and their biological behaviour was studied in mice and compared to that of the 99mTcN- and the 99mTc-complexes [prepared by dithionite (dit) reduction] of the same ligands. The carbonyl complexes were found to be efficient hepatobiliary agents and cleared more rapidly than the corresponding 99mTcN- and 99mTc(dit)-complexes.  相似文献   

13.
This study presents the first application of a general procedure based on the use of the [Tc(N)Cl(PS)(PPh3)] species (PS is an alkyl phosphinothiolate ligand) for the preparation of Tc(N) target-specific compounds. [Tc(N)Cl(PS)(PPh3)] selectively reacts with an appropriate dithiocarbamate ligand (SY) to give [Tc(N)(PS)(SY)] compounds. 1-(2-Methoxyphenyl)piperazine, which displays a potent and specific affinity for 5HT1A receptors, was selected as a functional group and conjugated to the dithiocarbamate unit through different spacers (L n ). [99mTc(N)(PS)(L n )] complexes were prepared in high yield (more than 90%). The chemical identity of 99mTc complexes was determined by high performance liquid chromatography comparison with the corresponding 99gTc complexes. All complexes were found to be inert toward transchelation with an excess of glutathione and cysteine. No notable biotransformation of the native compound into different species by the in vitro action of the serum and liver enzymes was shown. Nanomolar affinity for the 5HT1A receptor was obtained for [99mTc(N)(PSiso)L3] (IC50 = 1.5 nM); a reduction of the affinity was observed for the other complexes as a function of the shortening of the alkyl chain interposed between the dithiocarbamate and the pharmacophore. Negligible brain uptake was found from in vivo distribution data of [99mTc(N)(PSiso)L3]. The key finding of this study is that the complexes maintained good affinity and selectivity for 5HT1A receptors, and the IC50 value for [99gTc(N)(PSiso)L3] being comparable to the IC50 value found for WAY 100635. This result confirmed the possibility of preparing [99mTc(N)(PS)]-based target-specific compounds without affecting the affinity and selectivity of the bioactive molecules for the corresponding receptors.  相似文献   

14.
Design, physicochemical and biological studies of novel radioconjugates for the early diagnosis of Alzheimer's disease, based on the newly synthesized tacrine derivatives were performed. Novel tacrine analogues were labeled with technetium-99m and gallium-68. For all obtained radioconjugates ([99mTc]Tc-Hynic-(tricine)2NH(CH2)ntacrine and [68Ga]Ga-DOTA-NH(CH2)9tacrine, where n = 2–9 denotes the number of methylene groups CH2) the studies of physicochemical properties (lipophilicity, stability in the presence of an excess of standard amino acids cysteine or histidine, human serum and in cerebrospinal fluid) were performed. For two selected radioconjugates [99mTc]Tc-Hynic-(tricine)2NH(CH2)9Tac and [68Ga]Ga-DOTA-NH(CH2)9tacrine (characterized with the highest lipophilicity values) the biological tests (inhibition of cholinesterases action, molecular docking and biodistribution studies) have been performed. All novel radioconjugates showed high stability in biological solutions used. Both selected radioconjugates proved to be good inhibitors of cholinesterases and be able to cross the blood-brain barrier. Radioconjugates [99mTc]Tc-Hynic-(tricine)2NH(CH2)9tacrine and [68Ga]Ga-DOTA-NH(CH2)9tacrine fulfil the conditions for application in nuclear medicine. Radiopharmaceutical [68Ga]Ga-DOTA-NH(CH2)9tacrine, due to increased accuracy and improved sensitivity in PET imaging, may be better potential diagnostic tool for early diagnosis of Alzheimer’s disease.  相似文献   

15.
The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the ‘click-to-chelate’ protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The 99mTc labeled cMBP derivatives ([99mTc(CO)3]12, [99mTc(CO)3]13, and [99mTc(CO)3]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)3]12, [Re(CO)3]13, and [Re(CO)3]14, were shown to have high binding affinities (0.13 μM, 0.06 μM, and 0.16 μM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these 99mTc labeled cMBP derivatives ([99mTc(CO)3]12–14) to c-Met receptor positive U87MG cells.  相似文献   

16.
We have developed four 99mTc(CO)3-labeled lipophilic tracers as potential radiolabeling agents for cells based on a hexadecyl tail. 99mTc(CO)3-hexadecylamino-N,N′-diacetic acid (negatively charged), 99mTc(CO)3-hexadecylamino-N-α-picolyl-N′-acetic acid (uncharged), 99mTc(CO)3-N,N′-dipicolylhexadecylamine (positively charged), 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine (positively charged) were prepared in a radiolabeling yield: >90%. Preliminary cell uptake studies were performed in mixed blood cells with or without plasma and were compared with 99mTc-d,l-HMPAO and [18F]FDG. In plasma-free blood cells, maximum uptake (78%) was obtained for 99mTc(CO)3-N-hexadecylaminoethyl-N′-aminoethylamine after 60 min incubation (compared to 55% and 23% for 99mTc-d,l-HMPAO and [18F]FDG, respectively) while in plasma-rich medium, 99mTc(CO)3-N,N′-dipicolylhexadecylamine was best bound (54%, similar to the binding of 99mTc-d,l-HMPAO). Biodistribution in normal mice showed mainly hepatobiliary clearance of the agents and initial high lung uptake. The radiolabeled compounds showed good blood clearance with maximally 7.9% injected dose per gram at 60 min post injection. While the least lipophilic agent (99mTc(CO)3-N,N′-dipicolylhexadecylamine, log P = 1.3) showed the best cell uptake, there appears to be no direct correlation between lipophilicity and tracer uptake in mixed blood cells. In view of its comparable cell uptake to well known cell labeling agent 99mTc-d,l-HMPAO, 99mTc(CO)3-N,N′-dipicolylhexadecylamine merits further evaluation as a potential cell labeling agent.  相似文献   

17.
The ciprofloxacin dithiocarbamate (CPFXDTC) was radiolabeled with [99mTc(CO)3(H2O)3]+ intermediate to form the 99mTc(CO)3–CPFXDTC complex in high yield. The 99mTc(CO)3–CPFXDTC complex was characterized by HPLC and its stability in serum was studied. Its partition coefficient indicated that it was a lipophilic complex. The bacterial binding efficiency of 99mTc(CO)3–CPFXDTC was almost the same as that of 99mTcN–CPFXDTC, and was higher than that of 99mTc–ciprofloxacin. Biodistribution results in induced infection mice showed 99mTc(CO)3–CPFXDTC had higher uptake at the sites of infection and better abscess/blood and abscess/muscle ratios than those of 99mTc–ciprofloxacin and 99mTcN–CPFXDTC. Single photon emission computed tomography (SPECT) static imaging study in infected rabbits demonstrated the uptake in the left thigh infection lesion was observable, while no accumulation in the right thigh muscle was found. These results suggested 99mTc(CO)3–CPFXDTC would be a promising candidate for further evaluation as infection imaging agent.  相似文献   

18.
Lung scintigraphy using N-isopropyl-p-[123I]iodoamphetamine (IMP) was performed on 26 patients with pulmonary tuberculosis. Early (5 min after injection) and late images (4 h after injection) were obtained with a large-field γ-camera equipped with a digital computer. Lung scintigraphy using [99mTc]MAA (MAA) was also done. Although early IMP images showed the same findings as [99mTc]MAA images, a discrepancy between delayed IMP images and [99mTc]MAA images was seen in some patients. Increment of activities seen in late images was demonstrated in most patients whose chest x-ray findings included exudative inflammatory changes. Uptake and clearance of IMP was considered to be affected by the active phase of pulmonary tuberculosis.  相似文献   

19.

Abstract  

Auger-emitting radionuclides such as 99mTc have been the focus of recent studies aiming at finding more selective therapeutic approaches. To explore the potential usefulness of 99mTc as an Auger emitter, we have synthesized and biologically evaluated novel multifunctional structures comprising (1) a pyrazolyl-diamine framework bearing a set of donor atoms to stabilize the [M(CO)3]+ (M is Re, 99mTc) core; (2) a DNA intercalating moiety of the acridine orange type to ensure close proximity of the radionuclide to DNA and to follow the internalization and subcellular trafficking of the compounds by confocal fluorescence microscopy; and (3) a bombesin (BBN) analogue of the type X-BBN[7-14] (where X is SGS, GGG) to provide specificity towards cells expressing the gastrin releasing peptide receptor (GRPr). Of the evaluated 99mTc complexes, Tc 3 containing the GGG-BBN[7-14] peptide showed the highest cellular internalization in GRPr-positive PC3 human prostate tumor cells, presenting a remarkably high nuclear uptake in the same cell line. Live-cell confocal imaging microscopy studies with the congener Re complex, Re 3 , showed a considerable accumulation of fluorescence in the nucleus, with kinetics of uptake similar to that exhibited by Tc 3 . Together, these data show that the acridine orange intercalator and the metal fragment are colocalized in the nucleus, which indicates that they remain connected despite the lysosomal degradation of Tc 3 /Re 3 . These compounds are the first examples of 99mTc bioconjugates that combine specific cell targeting with nuclear internalization, a crucial issue to explore use of 99mTc in Auger therapy.  相似文献   

20.
The β emitting isotopes 186Re and 188Re are logical choices on which to base therapeutic radiopharmaceuticals that might be expected to be analogous to diagnostic radiopharmaceuticals based on 99mTc. However, the chemistry of rhenium is sufficiently different from that of technetium so that the development of Re radiopharmaceuticals often cannot be predicated on the known chemistry and biological behavior of 99mTc radiopharmaceuticals. The relevant chemical differences involve the greater stability of the higher oxidation states of Re (and thus the greater tendency of reduced Re radiopharmaceuticals to undergo re-oxidation to perrhenate), and the greater substitution inertness of reduced Re complexes. These differences are illustrated (1) in the preparation and use of 186Re (Sn)-HEDP and 99mTc(Sn)-HEDP diphosphonate radiopharmaceuticals designed, respectively, for palliative therapy and diagnosis of metastatic cancer to bone, and (2) in the preparation and biodistribution of tr-[186Re(DMPE)2Cl2]+ and [186Re(DMPE)3]+, analogs to the potential myocardial perfusion imaging agents tr-[99mTc(DMPE)2Cl2]+ and [99mTc(DMPE)3]+. [HEDP = (1-hydroxyethylidene)diphosphonate; DMPE = 1,2-bis(dimethylphosphino)ethane].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号