首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The direct labeling of antibodies and antibody fragments to form a highly stable bond between technetium and the sulfide groups of proteins is now well established. To optimize this reaction, the antibody protein must have sufficient reactive sulfides available to accept that technetium metal ions that are formed by the reduction of pertechnetate in the presence of a weak complexing agent. The reactive sulfide groups are provided by first reducing a small fraction of the disulfide bridges in the antibody protein or by starting with Fab′ fragments, which already have reactive sulfide groups. When the antibody protein has been appropriately reduced, and the reactive sulfide groups protected by a metal ion with a lower binding affinity than technetium, such as tin or zinc, very high labeling yields of high-affinity-bonded 99mTc can be achieved. This can be accomplished without loss of immunoreactivity, measured as either affinity or immunoreactive fraction.Side reactions can produce radiochemical impurities such as low-affinity, bound 99mTc; 99mTc colloids; 99mTc peptides or antibody aggregates; or 99mTc-complexes. Also, pertechnetate ions may be an impurity if the sodium pertechnetate solution added to the reduced antibodies is not completely reduced. The specifics of minimizing these side reactions have not been extensively discussed in the prior literature; however, it is clear that appropriate reduction of the protein prior to labeling and complete removal of the reducing agent, particularly if it contains reactive sulfide groups or is toxic, are critical.One- or two-step 99mTc-labeling kits for preparing 99mTc-labeled antibody or antibody fragments are rapidly being introduced for use in clinical nuclear medicine studies. These direct labeling methods employ a common sequence of chemical reactions, although the reducing agents for both the antibody and the [99mTc]pertechnetate may vary. Different 99mTc transfer agents may be used, but all transfer agents have the common feature of quickly forming weak to moderately strong complexes with reduced technetium. Most use Sn(II) to reduce the pertechnetate, although other reducing agents can be used.  相似文献   

2.
Platelets pretinned with a neutral Sn(II)-2-mercaptopyridme-N-oxide (SN-MPO) were labeled with 99mTc and compared to those labeled with 99mTc-HMPAO. The conditions of labeling platelets, e.g. concentrations of platelets and Sn(II)-MPO, 99mTc in ACD-saline or ACD-plasma media, pH and incubation time, were optimized using canine platelets. Moderate labeling efficiency was obtained with 20 μg of tin(II) chloride and 30 min incubation with Sn-MPO and pertechnetate. The viability of labeled platelets was determined by platelet recovery and platelet survival times in Beagle dogs. The labeling efficiency with platelets from 43 mL of blood was 62.8 ± 7.6%. The platelet recovery was 35.7 ± 5.0% and exponential survival time was 34.6 ± 3.1 h compared to 43.3 ± 12.0% and 29.5 ± 3.3 h for 99mTc-HMPAO-labeled platelets. These values were significantly (P < 0.01) lower than 111In-labeled platelets. Biodistribution in dogs indicates lower retention in blood, spleen and liver after some initial 99mTc excretion in urine. The platelet deposition with 99mTc platelets (Sn-MPO method) on polyurethane angio-catheters was similar to 99mTc-HMPAO-labeled platelets. This study indicates that the platelets could be successfully labeled with pertechnetate in a cost-effective manner for the evaluation of thromboembolic complications.  相似文献   

3.
Multilamellar liposomes composed of eight different mixtures of distearoylphosphatidylcholine (DSPC) and sphingomyelin (SM) were prepared containing [99mTc]pertechnetate. The in vitro permeability of the liposome preparations in buffer and serum were measured by both dialysis and direct exposure. Liposomes composed of 25–33% SM were least permeable exhibiting leakage half-times of approximately 70 h in buffer and 52 h in serum. Pertechnetate-containing liposomes of three different lipid compositions were injected into mice and the biodistribution of 99mTc activity was determined. All preparations were taken up primarily by the lungs and liver. The half-time for clearance of 99mTc activity ranged from 24.8 to 30.6 h for the liver and 25.3 to 33.0 h for the lungs.  相似文献   

4.
A new method for labeling preformed liposomes with technetium-99m (99mTc) has been developed which is simple to perform and stable in vivo. Previous 99mTc-liposome labels have had variable labeling efficiencies and stability. This method consistently achieves high labeling efficiencies (> 90%) with excellent stability. A commercially available radiopharmaceutical kit—hexamethylpropyleneamine oxime (HM-PAO)—is reconstituted with 99mTcO4 and then incubated with preformed liposomes that encapsulate glutathione. The incubation takes only 30 min at room temperature. Liposomes that co-encapsulate other proteins such as hemoglobin or albumin, in addition to glutathione, also label with high efficiency. Both in vitro and in vivo studies indicate good stability of this label. Rabbit images show significant spleen and liver uptake at 2 and 20 h after liposome infusion without visualization of thyroid, stomach or bladder activity.This labeling method can be used to study the biodistribution of a wide variety of liposome preparations that are being tested as novel drug delivery systems. This method of labeling liposomes with 99mTc may also have applications in diagnostic imaging.  相似文献   

5.
The adsorption behaviour on hydrous manganese dioxide of 99Mo in the form of molybdate and molybdophosphate and of 99mTc in the form of pertechnetate was investigated at different solution acidities. The adsorption capacity of molybdenum is much higher for the molybdophosphate form. A 99mTc-generator is suggested. This generator is based on the adsorption of [99Mo]molybdophosphate on MnO2, at an acidity of 0.5 N. 99mTc is then eluted either by 0.9% NaCl or by methyl ethyl ketone. Radionuclidic, radiochemical and chemical purity tests of the eluates were performed and the present generator seems to offer some advantages over the traditional alumina generator.  相似文献   

6.
A kit has been developed to instantly prepare 99mTc(V)—DMSA. The freeze-dried kit consisting of DMSA, stannous chloride and ascorbic acid in appropriate proportions, produces quality 99mTc(V)—DMSA when mixed with 0.2 mL of 3.5% NaHCO3 solution and 2–4 mL of [99mTc] pertechnetate. The radiopharmaceutical characterized by chromatography with ITLC-SG in 0.9% saline and horizontal paper electrophoresis in 50 mM vernol buffer, pH 8.6, at a potential gradient of 15 V/cm showed a different mobility with respect to 99mTc(III)-DMSA, a known agent for kidney imaging. The new agent exhibited less plasma protein binding as compared to that of 99mTc(III)-DMSA. Biodistribution of the pentavalent DMSA in mouse demonstrated greater uptake in bone and muscle and lower uptake in liver and kidney with respect to trivalent DMSA. The soft tissue tumour specificity and its suitability for tumour scintigraphy was apparent from the scintigrams of mammary carcinoma in a C3H Jax mouse and medullary carcinoma in a patient. Brain metastatic lesions were also visible in a breast carcinoma patient after administering him with the agent.  相似文献   

7.
A previous method was modified to obtain [99mTc(TBI)6]+ by reacting Zn(TBI)2Br2 directly with 99mTcO4 in the presence of Sn2+ ions. [Cu(TBI)4]Cl was next used as a source of TBI. On reaction with 99mTcO4 and Sn2+ ions for 3 min at 100 °C, [99mTc(TBI)6]+ product of radiochemical purity >90% and yield >70% was obtained. Data of biodistribution in rats (2–2.5% in heart) and biokinetics in rabbits were satisfactory. The kit formulation was found to be stable and also safe for administration.  相似文献   

8.
Human biosynthetic insulin is a polypeptide hormone that plays an important and essential role in control of the level of carbohydrate, protein, and fat metabolism in the blood. Human pancreatic insulin was labeled with 99mTc to form a new radiopharmaceutical with a labeling yield of 99 ± 1% under optimum conditions: 0.1 mL insulin, pH 7, 25 μg stannous chloride, 1 mL (19 mCi) of pertechnetate, room temperature, and 10 min reaction time. The 99mTc–insulin complex was examined using paper chromatography, ITLC, electrophoresis, and HPLC. In addition, in vitro and in vivo study of 99mTc–insulin complex was performed at different time intervals.  相似文献   

9.
We have designed (S)-(5-(azetidin-2-ylmethoxy)pyridine-3-yl)methyl cyclopentadienyltricarbonyl technetium carboxylate ([99mTc]CPTT–A–E) with high affinity for nicotinic acetylcholine receptors (nAChRs) using (2(S)-azetidinylmethoxy)-pyridine (A-85380) as the lead compound to develop a Tc-99m-cyclopentadienyltricarbonyl-technetium (99mTc)-labeled nAChR imaging probe. Because technetium does not contain a stable isotope, cyclopentadienyltricarbonyl rhenium (CPTR) was synthesized by coordinating rhenium, which is a homologous element having the same coordination structure as technetium. Further, the binding affinity to nAChR was evaluated. CPTR–A–E exhibited a high binding affinity to nAChR (Ki = 0.55 nM). Through the radiosynthesis of [99mTc]CPTT–A–E, an objective compound could be obtained with a radiochemical yield of 33% and a radiochemical purity of greater than 97%. In vitro autoradiographic study of the brain exhibited that the local nAChR density strongly correlated with the amount of [99mTc]CPTT–A–E that was accumulated in each region of interest. Further, the in vivo evaluation of biodistribution revealed a higher accumulation of [99mTc]CPTT–A–E in the thalamus (characterized by the high nAChR density) when compared with that in the cerebellum (characterized by the low nAChR density). Although additional studies will be necessary to improve the uptake of [99mTc]CPTT–A–E to the brain, [99mTc]CPTT–A–E met the basic requirements for nAChR imaging.  相似文献   

10.
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting 99mTc-tricarbonyl complexes that are cationic or lack a charge, no anionic 99mTc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic 99mTc-tricarbonyl complex ([99mTc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [99mTc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [99mTc]TMCE was 12–17%, with a radiochemical purity greater than 98% after HPLC purification. [99mTc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [99mTc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes.  相似文献   

11.
A DTPA-folate conjugate was radiolabeled with (99m)Tc by stannous chloride reduction of [(99m)Tc]sodium pertechnetate in an aqueous solution of DTPA-folate. The radiochemical purity of the product consistently exceeded 97%, as assessed by thin-layer chromatography employing conditions analogous to those for radiochemical quality control of the radiopharmaceutical [(99m)Tc]DTPA. HPLC demonstrated that the radiolabeled product resulted from the intact DTPA-folate conjugate and not unconjugated DTPA. The ability of [(99m)Tc]DTPA-folate to target folate receptors in vivo was assessed in biodistribution studies with athymic mice bearing subcutaneous folate-receptor-positive human KB cell tumors. As an internal control, previously studied [(111)In]DTPA-folate was coinjected with the [(99m)Tc]DTPA-folate, along with varying amounts of DTPA-folate (0.38 mg/kg, 1.6 mg/kg, or 14 mg/kg). At each DTPA-folate dose, [(99m)Tc]DTPA-folate exhibited tumor uptake comparable to that of the coadministered [(111)In]DTPA-folate, with radiotracer levels declining at the higher DTPA-folate doses due to competitive receptor binding of the unlabeled conjugate. Tumor uptake of both tracers was also competitively blocked by preadministered folic acid dihydrate (2.9 mg/kg). Tumor-to-background tissue contrast obtained with [(99m)Tc]DTPA-folate was generally similar to that obtained with [(111)In]DTPA-folate. The (99m)Tc-labeled DTPA-folate conjugate may have utility as a targeted radiopharmaceutical for imaging neoplastic tissues known to overexpress the folate receptor.  相似文献   

12.
The labeling of red blood cells with technetium-99m(99mTc) depends on a reducing agent and stannous ions, as chloride or fluoride, are widely utilized. This labeling may also be altered by drugs. Moreover, some authors have reported that the survival of Escherichia coli (E. coli) cultures decreases in presence of stannous ions. Phytic acid is present in the daily diet and we evaluated its influence on: (i) the labeling of blood elements with 99mTc and (ii) on the survival of an E. coli strain treated with stannous fluoride. Heparinized whole blood was withdrawn from Wistar rats and it was incubated with stannous chloride and with 99mTc, as sodium pertechnetate, centrifuged and plasma (P) and blood cells (BC) were isolated. Samples of P and BC were also precipitaded with trichloroacetic acid, centrifuged and soluble (SF) and insoluble fractions (IF) isolated. E. coli culture was treated with stannous fluoride in presence of phytic acid. As phytic acid altered the fixation of 99mTc on BC, on IF-P and on IF-BC and, moreover, it abolished the lethal effect of stannous fluoride on the E. coli culture, we can suggest that, probably, phytic acid would have chelating properties to the stannous ions.  相似文献   

13.
Affibody molecules constitute a novel class of molecular display selected affinity proteins based on non-immunoglobulin scaffold. Preclinical investigations and pilot clinical data have demonstrated that Affibody molecules provide high contrast imaging of tumor-associated molecular targets shortly after injection. The use of cysteine-containing peptide-based chelators at the C-terminus of recombinant Affibody molecules enabled site-specific labeling with the radionuclide 99mTc. Earlier studies have demonstrated that position, composition and the order of amino acids in peptide-based chelators influence labeling stability, cellular processing and biodistribution of Affibody molecules. To investigate the influence of the amino acid order, a series of anti-HER2 Affibody molecules, containing GSGC, GEGC and GKGC chelators have been prepared and characterized. The affinity to HER2, cellular processing of 99mTc-labeled Affibody molecules and their biodistribution were investigated. These properties were compared with that of the previously studied 99mTc-labeled Affibody molecules containing GGSC, GGEC and GGKC chelators. All variants displayed picomolar affinities to HER2. The substitution of a single amino acid in the chelator had an appreciable influence on the cellular processing of 99mTc. The biodistribution of all 99mTc-labeled Affibody molecules was in general comparable, with the main difference in uptake and retention of radioactivity in excretory organs. The hepatic accumulation of radioactivity was higher for the lysine-containing chelators and the renal retention of 99mTc was significantly affected by the amino acid composition of chelators. The order of amino acids influenced renal uptake of some conjugates at 1 h after injection, but the difference decreased at later time points. Such information can be helpful for the development of other scaffold protein-based imaging and therapeutic radiolabeled conjugates.  相似文献   

14.
The deoxyglucose dithiocarbamate (DGDTC) was successfully labeled with the 99mTc(CO)3 core to provide the corresponding 99mTc(CO)3–DGDTC complex in good yields. The radiochemical purity of the 99mTc(CO)3–DGDTC complex was over 90%, as measured by high performance liquid chromatography (HPLC). The complex possessed good stability in saline at room temperature and in mouse plasma at 37 °C. Its partition coefficient result indicated that it was a hydrophilic complex. The electrophoresis results showed the complex was neutral. The biodistribution of 99mTc(CO)3–DGDTC in mice bearing S 180 tumor showed that the complex clearly accumulated in tumor, exhibiting high tumor/blood and tumor/muscle ratios and good tumor retention. Single photon emission computed tomography (SPECT) image studies showed there was a visible uptake in tumor sites, suggesting 99mTc(CO)3–DGDTC could be considered as a potential tumor imaging agent.  相似文献   

15.
Using [99mTc]pertechnetate as an aqueous space marker, the permeability of liposomes composed of seven different mixtures of distearoylphosphatidylcholine (DSPC) and sphingomyelin (SM) was determined. Liposomes containing 20–33% SM were the least permeable in the presence of rheumatoid synovial fluid. Following injection of 99mTc-containing liposomes into the knee joints of rabbits, retention of 99mTc in the knee was more than 200 times greater than following injection of nonencapsulated [99mTc]pertechnetate. The knee clearance biologic half time of 99mTe with DSPC/SM (4:1) liposomes was 64 h. Most of the activity that had leaked from the knee was not found in extra-articular tissues, suggesting rapid excretion. When DSPC/SM (4:1) liposomes were labeled with 111In(oxine), a knee clearance biologic half time of greater than 1200 h was observed.  相似文献   

16.
In developing new ligands as potential brain and heart perfusion imaging agents two ligands based upon N2S2 donor atoms with the biphenyl backbone were synthesized. Biphenyl-2,2′-bis(N-1-amino-2-methyl-propane-2-thiol) (BP-BAT-TM) and biphenyl-2,2′-bis(N-1-amino-2-ethyl-butane-2-thiol) (BP-BAT-TE) form stable, neutral and lipid soluble complexes with [99mTc]pertechnetate in the presence of tin(II) tartarate as a reducing agent. The [99mTc]BP-BAT-TM complex penetrates the blood-brain barrier following i.v. injection into rats. Washout from the brain is fast, indicating no retention. The biodistribution of [99mTc]BP-BAT-TE in rats showed an intitial heart uptake (0.8% /organ, at 2 min) and a slow washout (0.74% at 15 min). No brain uptake was found (0.05%). Significant uptake and retention in liver was observed. An imaging study of [99mTc]BP-BAT-TE in a monkey showed no brain uptake and a clear indication of liver uptake and gall bladder clearance. These results indicate that this ligand system may be suitable as the basic core structure for the development of new imaging agents. Further studies with structural variations in the biphenyl backbone are warranted to develop new 99mTc imaging agents for clinical applications.  相似文献   

17.
We have evaluated five compounds, stannous chloride (SnCl2), 2-mercaptoethanol (2-ME), dithiothreitol (DTT), dithioerythritol (DTE), and ascorbic acid (AA) to reduce monoclonal antibody MoAb (disulfide groups and compared their efficacy for labeling MoAbs with 99mTc. The reduction of 99mTc with dithionite at pH 11 was nearly quantitative. The use of AA, at a molar ratio of 3500:1, for three IgG and three IgM antibodies examined, gave a labeling efficiency greater than 95%. Hence no purification was needed. The immunospecificity of AA preparations determined by specific antigen assay was 84 ± 1% for an IgM and 82.6 ± 1.1% for an IgG, highest among all agents tested. The stability of the tracer was evaluated by challenging the product with such 99mTc avid agents as cysteine, DTPA, and human serum albumin. By HPLC analysis, no 99mTc was transchelated using chelating agent to protein molar ratios as high as 500:1. In two separate groups of five mice each, the liver uptake at 4 h post injection averaged 6.8 ± 2.9% per gram for 125I-TNT-1 (IgG) and 6 ± 5.1% per gram for the same MoAb labeled with 99mTc using AA. The AA technique promises to label antibodies with 99mTc and perhaps with 186Re, by a simple “kit” procedure.  相似文献   

18.
An improved method of direct labeling MAbs with 99mTc is described. Two murine monoclonal antibodies, designated Lym-1 and B72.3, have been successfully labeled with 99mTc in 0.1 M borate buffer at pH 9.3. The choice of buffer and pH was essential for obtaining a radiolabeling yield ⩾98%. In vitro studies demonstrated that the radiolabeled antibodies were stable and retained their immunoreactivity. Imaging and biodistribution studies using Raji and LS174T human tumor-bearing nude mice demonstrated a significant tumor uptake at 24-h post-injection of 99mTc-labeled MAbs. This improved labeling method showed better stability than those of previously published methods and resulted in significant improvement in the uptake of antibody in tumor. External images at 24 h post-injection revealed clearly visible tumors demonstrating the benefit of this method for tumor immunoscintigraphy.  相似文献   

19.
The in vitro labeling and stability of 99mTc-labeled antibody Fab′ fragments prepared by a direct labeling technique were evaluated. Eight antibody fragments derived from murine IgG1 (N = 5), IgG2a (N = 2) and IgG3 (N = 1) isotypes were labeled with a preformed 99mTc-d-glucarate complex. No loss of radioactivity incorporation was observed for all the 99mTc-labeled antibody fragments after 24 h incubation at 37 °C. The 99mTc-labeled antibody fragments (IgG1, N = 2; IgG2a, N = 2; IgG3, N = 1) were stable upon challenge with DTPA, EDTA or acidic pH. Furthermore, using the affinity chromatography technique, two of the 99mTc-labeled antibody fragments displayed no loss of immunoreactivity after prolonged incubation in phosphate buffer up to 24 h at 37 °C. The bonding between 99mTc and antibody fragments was elucidated by challenging with a diamide ditholate (N2S2) compound. The Fab′ with IgG2a isotype displayed tighter binding to 99mTc in comparison to the Fab′ from IgG1 and IgG3 isotype in N2S2 challenge and incubation with human plasma. The in vivo biodistribution of five 99mTc-labeled fragments were evaluated in normal mice. In conclusion, the direct labeling method allows stable 99mTc labeling of antibody fragments from three of the major murine isotypes.  相似文献   

20.
A simple procedure for the preparation of 99mTc—carbonyl complexes of dithiocarbamates in high yield and radiochemical purity has been developed and used for the preparation of 99mTc—carbonyl complexes of bis(2-hydroxyethyl)dithiocarbamate and bis(2-hydroxypropyl)dithiocarbamate. These complexes were found to be extremely stable and their biological behaviour was studied in mice and compared to that of the 99mTcN- and the 99mTc-complexes [prepared by dithionite (dit) reduction] of the same ligands. The carbonyl complexes were found to be efficient hepatobiliary agents and cleared more rapidly than the corresponding 99mTcN- and 99mTc(dit)-complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号