首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using cultured cerebral cortical neurons at mature stages (9 days in culture, d.i.c.) it was demonstrated that glutamate, NMDA (N-methyl-D-aspartate) and to a lesser extent KA (kainate) increase the intracellular cGMP concentration ([cGMP]i) whereas no such effect was observed after exposure of the cells of QA (quisqualate) and AMPA (2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate). No effect of glutamate, NMDA and KA was observed in immature neurons (2 d.i.c.). The pharmacology of these cGMP responses was investigated using the glutamate antagonists APV (2-amino-5-phosphonovalerate) with selectivity for NMDA receptors, CNQX (6-cyano-7-nitro-quinoxaline-2,3-dione) with selectivity for non-NMDA receptors and the novel KA selective antagonists AMOA (2-amino-3-[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propionate) and AMNH (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate). In addition, the cytotoxicity of glutamate, NMDA and KA was studied and found to be enhanced by addition of the non-metabolizable cGMP analogue 8-Br-cGMP. On the contrary, the toxicity of QA and AMPA was not affected by 8-Br-cGMP. Pertussis toxin augmented the toxicity elicited by glutamate, NMDA, KA and QA but not that induced by AMPA. On the other hand, only glutamate and KA induced toxicity was potentiated by cholera toxin, which also enhanced the stimulatory effect of glutamate and NMDA but not that of KA on the cellular cGMP content. The toxicity as well as the effects on intracellular cGMP levels could be antagonized by the specific excitatory amino acid (EAA) antagonists. These results suggest that the mechanisms by which the various excitatory amino acids exert cytotoxicity are different, and that increased cGMP levels may participate in the mediation of glutamate, NMDA or KA induced toxicity but less likely in QA and AMPA mediated toxicity. Furthermore, G-proteins or other pertussis or cholera toxin sensitive entities seem to be involved in the cytotoxic action of all excitatory amino acids except AMPA.  相似文献   

2.
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system.  相似文献   

3.
The cytotoxic action of the excitatory amino acids (EAAs) glutamate, N-methyl- D-aspartate (NMDA), quisqualate (QA), kainate (KA) and (RS)-2-amino-3(3-hydoxy-5-methylisoxazol-4-yl) propionate (AMPA) was studied in cerebral cortical neurons in culture. The pharmacological profile of these actions was characterized using the NMDA selective antagonist D-(-)-2-amino-5- phosphonopentanoate (APV) and the non-NMDA selective antagonists 6.7- dinitroquinoxaline-2,3-dione (DNQX), 2-amino-3[3-(carboxymethoxy)-5- methylisoxazol-4-yl]-propionate (AMOA) and 2-amino-3-[2-(3-hydroxy-5- methylisoxazol-4-yl)methyl-3-methyl-3-oxoisoxazolin-4-yl] propionate (AMNH). The role of intracellular Ca++ homeostasis and cGMP production for development of EAA mediated cytotoxicity was assessed by measurements of changes in [Ca++]i using the flourescent Ca++ chelator Fluo-3 and in cGMP concentrations using a conventional radioimmune assay. It was found that glutamate toxicity involves both NMDA and non-NMDA receptor activation and that aberrations in Ca++ homeostasis brought about by Ca++ influx and/or liberation of Ca++ from internal stores aare important for development of toxicity. The drug dantrolene which prevents release of Ca++ from such stores can prevent toxicity induced by glutamate, NMDA and QA completely but has no effect on KA and AMPA toxicity. Changes in cGMP levels appear to play a role for development of glutamate, NMDA and KA toxicity but does not seem to be involved in that triggered by QA and AMPA.Abbreviations AMNH: (2-amino-3-[2-(3-hydroxy-5-methylisoxazol-4-yl)methyl-5-methyl-3-oxoisoxazolin-4-yl]propionate) - AMOA: (2-amino-3[3-(carboxymethoxy)-5-methylisoxazol-4-yl]propinate) - AMPA: ( (RS) —2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propinate) - APV: (D-(-)-2-amino-5-phosphonopentanoate) - DNQX: (6,7-dinitroquinoxaline-2,3-dione) - KA (kinate) - QA (quisqualate)  相似文献   

4.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

5.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.  相似文献   

6.
朱辉  朱幸 《生理学报》1995,47(1):1-10
两栖类卵母细胞表达系统经注射鲫鱼脑mRNA后可表达多种神经递质受体和某些离子通道。本工作利用电压箝方法结合药理学手段对GABA受体和谷氨酸离子型受体作了较详细的研究。结果表明,由GABA诱发的电流反应中,约90%由GABAA受体介导,乘余约10%的成分对GABAA受体的专一性拮抗剂Bicuculline不敏感,而GABAB受体的专一性激动剂Baclofen不能引进电流反应,因此这部分受体特性与GA  相似文献   

7.
The effect of L-glutamate (Glu) and its structural analogs N-methyl-D-aspartate (NMDA), kainate (KA) and -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), on the activation of p42 mitogen activated protein kinase (MAPK) was examined in cultured chick radial glia cells, namely retinal Müller cells and cerebellar Bergmann cells. Glu, NMDA, AMPA and KA evoked a dose and time dependent increase in MAPK activity. AMPA and KA responses were blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) whereas NMDA responses were sensitive to 3-[(RS)-2-carboxypiperazin-4-yl)]-propyl-1-phosphonate (CPP) indicating that the increase in MAPK activity is mediated by AMPA/low affinity KA and NMDA subtypes of Glu receptors. The present findings open the possibility of a MAPK cascade involvement in the regulation of Glu-induced gene expression in radial glia.  相似文献   

8.
Prolactin secretion is controlled by the hypothalamus through different neurotransmitters which interact with multiple receptor subtypes. The discovery of different families of receptors for serotonin (5-HT1-5-HT7) and excitatory aminoacids (NMDA,KA,AMPA and metabotropic receptors) ilustrates the complexity of this regulation. Moreover, in the rat the role of different neurotransmitters changes during pubertal development. Present experiments were carried out to analyse the interactions between AMPA and serotoninergic receptors in the control of prolactin secretion in prepubertal male rats. For this purpose, 16 and 23-day old male rats were treated with 5-hydroxytryptophan (5-HTP, precursor of serotonin synthesis) plus fluoxetine (blocker of serotonin reuptake), 8-OH-DPAT (agonist of 5-HT1A receptors), DOI and α-Me-5-HT (agonists of 5-HT2 receptors), 1-phenylbiguanide (agonist of 5-HT3 receptors) alone or in combination with AMPA (agonist of AMPA receptors). The results obtained indicate that: (a) activation of 5-HT1A receptors stimulated PRL secretion on day 16 and inhibited it on day 23; activation of 5-HT2 receptors stimulated PRL secretion on days 16 and 23, whereas activation of 5-HT3 receptors inhibited PRL release only on day 23; (b) activation of AMPA receptors inhibited PRL secretion on day 23, but not on day 16 and (c) a cross-talk is apparent between 5-HT2 and AMPA receptors in the regulation of PRL secretion, the stimulatory effect of DOI being blocked by AMPA.  相似文献   

9.
Abstract: Mechanisms of non-NMDA receptor-mediated excitotoxicity were studied in embryonic rat hippocampal cultures using kainic acid (KA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) as agonists. Under basal culture conditions, overnight treatment with AMPA resulted in negligible excitotoxicity as assessed by phase-contrast microscopy and measurement of lactate dehydrogenase (LDH) release. In contrast, similar treatment with KA resulted in marked excitotoxic morphologic changes and release of LDH. Cotreatment of cultures with AMPA but not NMDA effectively blocked KA toxicity, suggesting that AMPA-induced rapid desensitization of the AMPA/KA receptor could account for the lack of prominent direct toxicity as well as AMPA's ability to block KA toxicity. To test this hypothesis, cultures were briefly pretreated with 10 μ M cyclothiazide, a drug reported to block desensitization of the AMPA/KA receptor, and then exposed overnight to cyclothiazide plus AMPA and/or KA. Cyclothiazide-treated cultures were now vulnerable to AMPA as well as KA; moreover, AMPA was unable to block KA toxicity completely, suggesting that cyclothiazide impaired AMPA/KA receptor desensitization. These and related studies suggest that a regulatory site may exist on the AMPA/KA receptor that modulates non-NMDA receptor-mediated excitotoxicity.  相似文献   

10.
We have previously shown that (RS)-2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-5-yl)isoxazol -4-yl] propionic acid (2-Me-Tet-AMPA) is a selective agonist at (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors, markedly more potent than AMPA itself, whereas the isomeric compound 1-Me-Tet-AMPA is essentially inactive. We here report the enantiopharmacology of 2-Me-Tet-AMPA in radioligand binding and cortical wedge electrophysiological assay systems, and using cloned AMPA (GluR1-4) and kainic acid (KA) (GluR5, 6, and KA2) receptor subtypes expressed in Xenopus oocytes. 2-Me-Tet-AMPA was resolved using preparative chiral HPLC. Zwitterion (-)-2-Me-Tet-AMPA was assigned the (R)-configuration based on an X-ray crystallographic analysis supported by the elution order of (-)- and (+)-2-Me-Tet-AMPA using four different chiral HPLC columns and by circular dichroism spectra. None of the compounds tested showed detectable affinity for N-methyl-D-aspartic acid (NMDA) receptor sites, and (R)-2-Me-Tet-AMPA was essentially inactive in all of the test systems used. Whereas (S)-2-Me-Tet-AMPA showed low affinity (IC(50) = 11 microM) in the [(3)H]KA binding assay, it was significantly more potent (IC(50) = 0.009 microM) than AMPA (IC(50) = 0.039 microM) in the [(3)H]AMPA binding assay, and in agreement with these findings, (S)-2-Me-Tet-AMPA (EC(50) = 0.11 microM) was markedly more potent than AMPA (EC(50) = 3.5 microM) in the electrophysiological cortical wedge model. In contrast to AMPA, which showed comparable potencies (EC(50) = 1.3-3.5 microM) at receptors formed by the AMPA receptor subunits (GluR1-4) in Xenopus oocytes, more potent effects and a substantially higher degree of subunit selectivity were observed for (S)-2-Me-Tet-AMPA: GluR1o (EC(50) = 0.16 microM), GluR1o/GluR2i (EC(50) = 0.12 microM), GluR3o (EC(50) = 0.014 microM) and GluR4o (EC(50) = 0.009 microM). At the KA-preferring receptors GluR5 and GluR6/KA2, (S)-2-Me-Tet-AMPA showed much weaker agonist effects (EC(50) = 8.7 and 15.3 microM, respectively). It is concluded that (S)-2-Me-Tet-AMPA is a subunit-selective and highly potent AMPA receptor agonist and a potentially useful tool for studies of physiological AMPA receptor subtypes.  相似文献   

11.
Abstract: In this study, the endonuclease inhibitor aurintricarboxylic acid (ATA) was examined for its ability to attenuate both acute and delayed excitotoxicity mediated through NMDA and non-NMDA glutamate receptors. Ex vivo embryonic chick retina, a model system frequently used for studies of excitotoxicity, was exposed to either 100 µM NMDA or kainate (KA) ± various concentrations of ATA for 60 min, then allowed to recover for 24 h. Lactate dehydrogenase release into the medium and histology were assessed as measures of delayed toxicity. ATA attenuated lactate dehydrogenase release due to NMDA or KA in a dose-dependent manner. Histology revealed that ATA decreased the number of pyknotic profiles in response to either glutamate agonist. The mechanism of ATA protection was addressed. ATA was found to block NMDA- but not KA-mediated 22Na+ influx and cyclic GMP formation. In membrane binding studies, ATA was relatively selective for displacement at the NMDA receptor. The IC50 values for displacement of [3H]CGS 19755, α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), or [3H]KA were 29.9 ± 1.3, 313 ± 46, and >1,000 µM± SEM, respectively. ATA also fully attenuated NMDA-induced and partially attenuated KA-induced acute excitotoxicity as monitored histologically by tissue swelling and by the increase in GABA in the medium. Temporal studies of ATA efficacy indicated that ATA needed to be present during NMDA exposure to afford protection but, versus KA, was equally effective if administered immediately after KA exposure. Questions regarding the cellular penetration of ATA were raised because incubation with 100 µM ATA for 60 min had no effect on lactate formation or [3H]leucine incorporation into trichloroacetic acid-precipitable material, even though, in cell-free systems, ATA is a potent inhibitor of phosphofructokinase activity and protein synthesis. These studies demonstrate that ATA can protect against excitotoxicity mediated through NMDA or non-NMDA glutamate receptors. The mechanism of protection versus NMDA is through interruption of NMDA receptor interactions. ATA has no direct effect at the KA receptor; thus, its mechanism of protection versus KA is distinct from that versus NMDA and is, at present, unknown.  相似文献   

12.
朱幸  朱辉 《生理学报》1994,46(5):417-426
本工作利用两栖类卵母细胞作为功能表达系统,对鸡视网膜中的谷氨酸受体和GABA受体的类型和基本性质进行了研究。在注射鸡视网膜mRNA的卵母细胞上,谷氨酸受体有明显的表达。L-Glu及其类似物KA,AMPA,QA都毫无例外地能诱导卵母细胞产生快速平滑的去极化电流,而NMDA,L-AP4,ACPD以及天冬氨酸不能诱导明显的电流反应。并且AMPA,QA对KA反应存在一定的抑制作用,提示AMPA,QA可能与KA作用于同一受体。抑制性氨基酸GABA的受体被证明大部分为GABAA亚型,但有小部分的GABA反应不能为荷包牡丹碱(bicuculline)所阻断。  相似文献   

13.
The cytotoxicity of the glutamate receptor agonists, N-methyl- -aspartate (NMDA), kainate (KA) and (RS)--amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) on cultured cerebral cortex neurones was monitored as a function of exposure time and concentration by following the release into the culture medium of the cytoplasmic enzyme lactate dehydrogenase from the neurones. Chronic exposure of the cells to different concentrations of the agonists showed that AMPA was the most potent excitotoxin (ED50 10 μM) followed in potency by NMDA (ED50 65 μM) and KA (ED50 100 μM). Experiments in which the neurones were exposed for different periods of time to fixed concentrations of the agonists showed that after short exposure times (1–3 min) cells survived for more than 24 h after removal of the agonists but after longer exposure times (5–10 min) cells survived for time periods ranging from 25 min to 6 h depending upon the exposure time and the nature of the agonist. The results of the latter experiments indicate that even short exposure times trigger processes in the cell membranes which even after removal of the excitotoxin will lead to neuronal death.  相似文献   

14.
棕榈酰化是一种可逆的翻译后修饰,其对蛋白质的定位和功能具有重要的调节意义.离子型谷氨酸受体有N-甲基-D-天冬氨酸(NMDA)受体、α-氨基羟甲基恶唑丙酸(AMPA)受体和人海藻酸受体.近期研究发现,它们的棕榈酰化修饰对其膜表面分布和内化均具有重要的意义.其中NMDA受体在其C末端有2个不同的棕榈酰化位点.1个位于C末端近膜区(CysclusterⅠ),它的棕榈酰化可以增高酪氨酸的磷酸化水平,增加受体膜表面分布,影响神经元中NMDA受体的组构性内化;另1个位于C末端中部(CysclusterⅡ),它受到蛋白质酰基转移酶GODZ的调节,使得受体在高尔基体大量积聚,从而影响受体的膜表面分布.与NMDA受体相似,AMPA受体也存在2个棕榈酰化位点.1个位于在第2跨膜域,受蛋白质酰基转移酶GODZ的调节,能导致AMPA受体在高尔基体的积聚.另1个位点在受体C末端近膜区,它的棕榈酰化能降低AMPA受体和4.1N蛋白的相互作用,并调节受体的内化.这两种离子型谷氨酸受体在棕榈酰化机制上虽然存在差异,但均对受体的运输、膜表面分布和内化具有十分重要的作用.  相似文献   

15.
The processes of N-methyl-d-aspartate (NMDA) receptor subunits expression were examined in cortical neurons and rat brain in order to investigate how the concanavalin A (Con A) modulates neuronal cells. Con A modulated the expression of NMDA receptor subunits in cultured cortical cells. Con A augmented the level of intracellular Ca2+ by α-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA). We determined whether activation of AMPA receptors was involved in the regulation of NMDA receptor expression with Con A by blocking the desensitization of AMPA receptors. The results showed that AMPA receptor antagonists suppressed NMDA receptor subunits expression in Con A-treated cortical neuronal cells. PMA elevated the expression of NMDA receptor subunits, while PKC inhibitor and tyrosine kinases inhibitor suppressed the expression of NMDA receptor subunits. Furthermore, it was shown that NMDA receptor subunits expression was modulated in a region-specific manner after the sustained microinfusion of Con A into the cerebroventricle of the rat brain. Collectively, it could be presumed that the AMPA receptor activation was involved in Con A-induced modulation of NMDA receptor subunits expression.  相似文献   

16.
Two 3-(5-tetrazolylmethoxy) analogues, 1a and 1b, of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA), a selective AMPA receptor agonist, and (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), a GluR5-preferring agonist, were synthesized. Compounds 1a and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors. Both analogues proved to be antagonists at all AMPA receptor subtypes, showing potencies (Kb=38-161 microM) similar to that of the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxazolyl]propionic acid (AMOA) (Kb=43-76 microM). Furthermore, the AMOA analogue, 1a, blocked two kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor effects. On the basis of docking to a crystal structure of the isolated extracellular ligand-binding core of the AMPA receptor subunit GluR2 and a homology model of the kainic acid receptor subunit GluR5, we were able to rationalize the observed structure-activity relationships.  相似文献   

17.
1. A review is presented of recent advances in glutamate receptor research with particular emphasis on studies which show that some glutamate receptors in the central nervous systems (CNS) of Xenopus and rat contain a mixture of N-methyl -D-aspartate-sensitive and kainate-sensitive subunits.2. Protein isolated from Xenopus CNS using a domoic acid affinity column exhibits complex pharmacological properties. It binds both [3H]kainate and [3H]glycine: the binding of the latter is strychnine-insensitive.3. When reconstituted into lipid bilayers, channels gated by kainate and NMDA can be elicited and the properties of these channels are similar to those gated by kainate receptors and NMDA receptors, respectively, in studies of vertebrate central neurones in situ.4. The protein can be fractionated into two components; one of which is sensitive only to kainate and AMPA, the other exhibiting sensitivity to both kainate and NMDA.5. When RNA isolated from Xenopus and rat CNS is injected into Xenopus oocytes, responses to kainate and NMDA can be seen within 2–3 days. The responses to co-application of these agonists support the contention that some of the glutamate receptors expressed in oocytes contain both kainate-sensitive and NMDA-sensitive subunits.  相似文献   

18.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

19.
Using organotypic slice cultures of hippocampus and cortex-striatum from newborn to 7 day old rats, we are currently studying the excitotoxic effects of kainic acid (KA), AMPA and NMDA and the neuroprotective effects of glutamate receptor blockers, like NBQX. For detection and quantitation of the induced neurodegeneration, we have developed standardized protocols, including--a) densitometric measurements of the cellular uptake of propidium iodide (PI), --b) histological staining by Flouro-Jade, --c) lactate dehydrogenase (LDH) release to the culture medium, --d) immunostaining for microtubulin-associated protein 2, and --e) general and specific neuronal and glial cell stains. The results show good correlation between the different markers, and are in accordance with results obtained in vivo. Examples presented in this review will focus on the use of PI uptake to monitor the excitotoxic effects of --a) KA and AMPA (and NMDA) in hippocampal slice cultures, and --b) KA and AMPA in corticostriatal slice cocultures, with demonstration of differentiated neuroprotective effects of NBQX in relation to cortex and striatum and KA and AMPA. A second set of studies include modulation of hippocampal KA-induced excitotoxicity and KA-glutamate receptor subunit mRNA expression after long-term exposure to low, non-toxic doses of KA and NBQX. We conclude that organotypic brain slice cultures, combined with standardized procedures for quantitation of cell damage and receptor subunit changes is of great potential use for studies of excitotoxic, glutamate receptor-induced neuronal cell death, receptor modulation and related neuroprotection.  相似文献   

20.
Abstract: Evidence from in vitro studies suggests that excitotoxic neuronal degeneration can occur by either an acute or delayed mechanism. Studies of the acute mechanism in isolated chick embryo retina using histological methods indicate that this process is rapidly triggered by activation of glutamate receptors of either the N-methyl-d -aspartate (NMDA) or non-NMDA subtypes. The delayed mechanism, studied primarily in cortical and hippocampal cell cultures prepared from embryonic rodent brain, requires activation of NMDA receptors. In these cell culture systems, stimulation of non-NMDA receptors does not rapidly trigger delayed neuronal degeneration, or does so only indirectly, via activation of NMDA receptors secondary to glutamate release. To provide a more valid basis for comparison of these two mechanisms, we have modified the isolated chick embryo retina model to permit studies of delayed as well as acute excitotoxic neurodegeneration. Retinas maintained for 24 h exhibited no morphological or biochemical signs of damage. Retinal damage was assessed by measuring lactate dehydrogenase (LDH) present in the medium at various times after exposure to agonists and normalized to total LDH in each retina. Glutamate exposure (1 mM, 30 min) did not result in LDH release by the end of the exposure period, but LDH was released over the following 24 h. Briefer periods also led to substantial LDH release. Incubation in the presence of NMDA, or the non-NMDA agonists kainate (KA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), led rapidly to delayed LDH release. NMDA and AMPA were more potent than glutamate, but high concentrations of glutamate led to more LDH release than high concentrations of these agonists. KA was a powerful excitotoxin, providing more LDH release than glutamate, NMDA, or AMPA at every concentration tested. The delayed LDH release induced by glutamate involved activation of both NMDA and non-NMDA receptors, as a combination of receptor-selective antagonists was necessary to provide complete blockade. These results indicate that glutamate, NMDA, AMPA, and KA all cause delayed as well as acute excitotoxic damage in the retina. It is interesting that brief exposure to the non-NMDA receptor agonists, in relatively low concentrations, led to delayed LDH release. This is different than in other in vitro models of delayed excitotoxic neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号