首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
激光共聚焦显微镜与光学显微镜之比较   总被引:10,自引:1,他引:10  
激光扫描共聚焦显微镜在活细胞的动态检测、光学切片和三维结构重建等方面较光学显微镜有质的飞跃。本文对激光扫描共聚焦显微镜和光学显微镜进行了比较和讨论,并简单介绍多光子激光扫描显微镜。  相似文献   

2.
Wu F  Zhang X  Cheung JY  Shi K  Liu Z  Luo C  Yin S  Ruffin P 《Biophysical journal》2006,91(6):2290-2296
In this article, we report a new type of fluorescence confocal microscope: frequency division multiplexed multichannel fluorescence confocal microscope, in which we encode the spatial location information into the frequency domain. In this microscope, the exciting laser beam is first split into multiple beams and each beam is modulated at a different frequency. These multiple beams are focused at different locations of the target to form multiple focal points, which further generate multiple fluorescent emission spots. The fluorescent emissions from different focal points are also modulated at different frequencies, because the exciting beams are modulated at different frequencies (or difference carrier frequency). Then, all the fluorescent emissions (modulated at different frequencies) are collected together and detected by a highly sensitive, large-dynamic-range photomultiplier tube. By demodulating the detected signal (i.e., via the Fourier transform), we can distinguish the fluorescent light emitted from the different locations by the corresponding carrier frequencies. The major advantage of this unique fluorescence confocal microscope is that it not only has a high sensitivity because of the use of photomultiplier tube but also can get multiple-point data simultaneously, which is crucial to study the dynamic behavior of many biological process. As an initial step, to verify the feasibility of the proposed multichannel confocal microscope, we have developed a two-channel confocal fluorescence microscope and applied it to study the dynamic behavior of the changes of the calcium ion concentration during the single cardiac myocyte contraction. Our preliminary experimental results demonstrated that we could indeed realize multichannel confocal fluorescence microscopy by utilizing the frequency division multiplexed microscope, which could become an effective tool to study the dynamic behavior of many biological processes.  相似文献   

3.
文章讨论了DNA芯片的制作原理和杂交信号的检测方法。依其结构,DNA芯片可分为两种形式,DNA阵列和寡核苷酸微芯片。DNA芯片的制作方法主要有光导原位合成法和自动化点样法。DNA芯片与标记的探针或DNA样品杂交,并通过探测杂交信号谱型来实现DNA序列或基因表达的分析。适应于DNA芯片的发展,同时出现了许多新型的杂交信号检测方法。主要有激光荧光扫描显微镜、激光扫描共焦显微镜、结合使用CCD相机的荧光显微镜、光纤生物传感器、化学发生法、光激发磷光物质存储屏法、光散射法等。  相似文献   

4.
转盘共聚焦显微镜是快速激光共聚焦显微镜的一种,与传统的激光共聚焦显微镜相比具有一些相同点,也有其特有的优势。本文主要介绍转盘共聚焦显微镜的基本原理及如何利用转盘共聚焦显微镜进行快速实验及应用实例,并与传统激光共聚焦显微镜进行比较。转盘共聚焦显微镜具有速度快、灵敏度高、对样品光损伤和光淬灭程度低、操作灵活简单,是随着实验技术发展使用越来越广泛的实验仪器。  相似文献   

5.
Several years ago our research program developed a video-rate confocal microscope with no moving parts, based on synchronizing and aligning the scan of an image dissector tube (IDT) with the light returning from a microscope stage that has been acousto-optically scanned by a laser beam. Improvements on the original system have recently been completed. The laser power has been substantially increased and the laser scan is now brought into the Nikon Diaphot inverted microscope through the epi-illumination port. Aberrations in the scanned beam have been reduced by performing the beam shaping required by the acousto-optic deflectors using prisms instead of cylindrical lenses. The IDT is located at the side camera output port at the end of a simple, efficient light path. The new system is described in detail and results obtained using the microscope in reflection and fluorescence mode are presented.  相似文献   

6.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

7.
Confocal images of marrow stromal (Westen-Bainton) cells   总被引:3,自引:0,他引:3  
A cytochemical method was used for imaging a defined subset of marrow stromal cells (alkaline phosphatase-positive reticulum cells, hereinafter referred to as Westen-Bainton cells), which are endowed with membrane-associated alkaline phosphatase. The use of two different types of confocal microscopes was compared: a tandem scanning reflected light microscope and a laser scanning confocal microscope equipped with a 633 nm (helium-neon) laser. Sharp confocal reflection images of the cytochemically stained stromal cells were obtained with both microscopes. Three-dimensional reconstructions were generated with both systems, revealing morphological features of Westen-Bainton cells related to both their actual shape and organization within tissue architecture, which were not otherwise appreciated. The observations were extended to individual cases of bone pathology, and demonstrated the value of confocal microscopy for the investigation of marrow-bone relationships in physiology and disease.  相似文献   

8.
本文介绍了我们最近发展的一项用于两栖类胚胎的免疫组织化学研究的技术。两栖类胚胎经过适当的化学固定以后,用振动切片机可以得到50—100 μ的切片。我们用这样的切片进行免疫萤光和免疫酶标染色,均得到满意的结果,可以进行光镜(共聚焦显微镜,普通显微镜)及透射电镜的观察。由于在整个过程中避免了使用有机溶剂及包埋剂,所以最大限度地保存了抗原性。与传统的各种免疫组化技术比较,切片的各部分组织均能迅速与抗体反应,组织保存相当完好,可以满足电镜观察的要求。运用这种方法,还可以将同一胚胎的不同切片分别用于光镜和电镜观察,使结果更具说服力。  相似文献   

9.
Principles and practices of laser scanning confocal microscopy   总被引:9,自引:0,他引:9  
The laser scanning confocal microscope (LSCM) is an essential tool for many biomedical imaging applications at the level of the light microscope. The basic principles of confocal microscopy and the evolution of the LSCM into today's sophisticated instruments are outlined. The major imaging modes of the LSCM are introduced including single optical sections, multiple wavelength images, three-dimensional reconstructions, and living cell and tissue sequences. Practical aspects of specimen preparation, image collection, and image presentation are included along with a primer on troubleshooting the LSCM for the novice.  相似文献   

10.
We describe a custom one-photon (confocal) and two-photon all-digital (photon counting) laser scanning microscope. The confocal component uses two avalanche photodiodes (APDs) as the fluorescence detector to achieve high sensitivity and to overcome the limited photon counting rate of a single APD ( approximately 5 MHz). The confocal component is approximately nine times more efficient than our commercial confocal microscope (fluorophore fluo 4). Switching from one-photon to two-photon excitation mode (Ti:sapphire laser) is accomplished by moving a single mirror beneath the objective lens. The pulse from the Ti:sapphire laser is 109 fs in duration at the specimen plane, and average power is approximately 5 mW. Two-photon excited fluorescence is detected by a fast photomultiplier tube. With a x63 1.4 NA oil-immersion objective, the resolution of the confocal system is 0.25 microm laterally and 0.52 microm axially. For the two-photon system, the corresponding values are 0.28 and 0.82 microm. The system is advantageous when excitation intensity must be limited, when fluorescence is low, or when thick, scattering specimens are being studied (with two-photon excitation).  相似文献   

11.
In Raman spectroscopic measurements of single cells (human lymphocytes) and chromosomes, using a newly developed confocal Raman microspectrometer and a laser excitation wavelength of 514.5 nm, degradation of the biological objects was observed. In the experiments high power microscope objectives were used, focusing the laser beam into a spot approximately 0.5 micron in diameter. At the position of the laser focus a paling of the samples became visible even when the laser power on the sample was reduced to less than 1 mW. This was accompanied by a gradual decrease in the intensity of the Raman signal. With 5 mW of laser power the events became noticeable after a period of time in the order of minutes. It is shown that a number of potential mechanisms, such as excessive sample heating due to absorption of laser light, multiple photon absorption, and substrate heating are unlikely to play a role. In experiments with DNA solutions and histone protein solutions no evidence of photo damage was found using laser powers up to 25 mW. No degradation of cells and chromosomes occurs when laser light of 660 nm is used. The most plausible explanation therefore seems to be that the sample degradation is the result of photochemical reactions initiated by laser excitation at 514.5 nm of as yet unidentified sensitizer molecules or complexes present in chromosomes and cells but not in purified DNA and histone protein samples.  相似文献   

12.
In the past, ultrastructural studies on chromosome morphology have been carried out using light microscopy, scanning electron microscopy and transmission electron microscopy of whole mounted or sectioned samples. Until now, however, it has not been possible to use all of these techniques on the same specimen. In this paper we describe a specimen preparation method that allows one to study the same chromosomes by transmission, scanning-transmission and scanning electron microscopy, as well as by standard light microscopy and confocal microscopy. Chromosome plates are obtained on a carbon coated glass slide. The carbon film carrying the chromosomes is then transferred to electron microscopy grids, subjected to various treatments and observed. The results show a consistent morphological correspondence between the different methods. This method could be very useful and important because it makes possible a direct comparison between the various techniques used in chromosome studies such as banding, in situ hybridization, fluorescent probe localization, ultrastructural analysis, and colloidal gold cytochemical reactionsAbbreviations CLSM confocal laser scanning microscope - EM electron microscopy - kV kilovolt(s) - LM light microscope - SEM scanning electron microscope - STEM scanning-transmission electron microscope - TEM transmission electron microscope  相似文献   

13.
传统荧光显微镜由于对某些荧光分子存在光毒性、光损伤等方面的缺陷,无法满足对部分活体样本进行长时间观测的需求。光片荧光显微镜(light sheet fluorescence microscope,LSFM)是一种新型荧光显微镜,有别于激光共聚焦显微镜,其特殊的正交光路设计和高效的信号采集装置,使其具备低光毒性、低光漂白、低光损伤和高时空分辨率等优良特性,从而能对细胞及大尺度生物组织样本进行时空连续性较好的记录,尤其适宜于活体生物样品。基于此,概述了光片荧光显微镜的成像原理、成像优势、成像效果的改进与优化历程及其在生命科学领域应用所取得的研究成果,重点对近三年相关应用进行了汇总,并简要介绍了其在神经生物学、发育生物学、动物细胞生物学和植物科学领域中一部分代表性研究内容,最后,总结了光片荧光显微镜的优点与发展至今仍存在的不足,并对其在光遗传学和多组学研究中的潜在应用进行了展望,以期为研究人员提供较为系统的光片荧光显微镜相关基础知识、最新的研究应用进展以及未来的潜在应用方向,为研究人员提供参考。  相似文献   

14.
15.
摘要 目的:探讨角膜激光共聚焦显微镜在单眼感染性角膜炎疾病诊断中的应用价值。方法:回顾性研究2020年6月到2021年6月选择在本院诊治的单眼感染性角膜炎疾病患者62例,所有患者都给予角膜激光共聚焦显微镜检查,记录影像学特征并判断诊断价值(以病原学诊断为金标准)。结果:真菌性角膜炎在角膜激光共焦显微镜下的病变区纵横交错的高反射的真菌菌丝或高反光细长颗粒状的孢子,细菌性角膜炎的病变处会聚集活化的树突状细胞及大量的炎症细胞,病毒性角膜炎的基底膜下神经纤维密度、神经主干的分支数减少,棘阿米巴性角膜炎的包囊表现为圆形高反光厚壁结构。角膜激光共聚焦显微镜判断为病毒性角膜炎17例,诊断病毒性角膜炎的敏感性与特异性为94.4 %和100.0 %;角膜激光共聚焦显微镜判断为棘阿米巴性角膜炎4例,诊断棘阿米巴性角膜炎的敏感性与特异性为94.4 %和100.0 %;角膜激光共聚焦显微镜判断为细菌性角膜炎21例,诊断细菌性角膜炎的敏感性与特异性为95.5 %和97.5 %;角膜激光共聚焦显微镜判断为真菌性角膜炎20例,诊断真菌性角膜炎的敏感性与特异性为94.4 %和93.2 %。ROC曲线分析显示角膜激光共聚焦显微镜诊断细菌性角膜炎、真菌性角膜炎、病毒性角膜炎、棘阿米巴性角膜炎的曲线下面积分别为0.525、0.579、0.777、0.731。结论:角膜激光共聚焦显微镜在单眼感染性角膜炎疾病诊断中的应用能较好的区分细菌性角膜炎、真菌性角膜炎、病毒性角膜炎、棘阿米巴性角膜炎,具有良好的诊断敏感性与特异性。  相似文献   

16.
By making only minor modifications, we adapted a conventional confocal beam-scanning laser microscope for the recording of UV-excited fluorescence. The major, and most expensive, change is that we coupled an external UV argon ion laser, providing the wavelengths 334, 351 and 364 nm, to the microscope scanner. We also replaced some optical components to obtain improved transmission and reflection properties in the UV. Only easily obtainable and inexpensive off-the-shelf components were used. The most serious problem encountered was the chromatic aberration of the microscope objective when using both UV and visible wavelengths. This is of no consequence in conventional microscopy where good imaging properties are important only in the visible region. In confocal microscopy on the other hand, good imaging properties are necessary for both the exciting and fluorescent light. Rather than having new optics designed, we tried with simple means to reduce the effects of the chromatic aberration to a tolerable level. This was done by mechanical adjustments in the ray-path. In addition we also tested two mirror objectives, which are inherently free from chromatic aberrations. However, such objectives have rather limited numerical apertures and are not of the immersion type. Their value in biomedical applications is therefore limited.The objective most frequently used in our experiments was a 63/1.25 oil-immersion fluorite. Without any compensation this objective had a depth resolution in UV-excited confocal fluorescence that was an order of magnitude worse than when using visible-light excitation. The useful field of view was also very small due to lateral chromatic aberration. By simple means we managed to improve the depth resolution by a factor of 4.4, and at the same time increase the useful field of view substantially. Still, the depth resolution was worse than what is obtained using visible light excitation. We think this is due to the fact that after compensation the objective is working with an incorrect tube length.Using the modified instrument, we recorded specimens labelled with AMCA and Fluoro-Gold, obtaining 1.5 μm thick optical sections.  相似文献   

17.
This protocol outlines a procedure for collecting and analyzing point spread functions (PSFs). It describes how to prepare fluorescent microsphere samples, set up a confocal microscope to properly collect 3D confocal image data of the microspheres and perform PSF measurements. The analysis of the PSF is used to determine the resolution of the microscope and to identify any problems with the quality of the microscope's images. The PSF geometry is used as an indicator to identify problems with the objective lens, confocal laser scanning components and other relay optics. Identification of possible causes of PSF abnormalities and solutions to improve microscope performance are provided. The microsphere sample preparation requires 2-3 h plus an overnight drying period. The microscope setup requires 2 h (1 h for laser warm up), whereas collecting and analyzing the PSF images require an additional 2-3 h.  相似文献   

18.
Summary The newly developed confocal scanning laser microscope, together with image processing by computer, has been used to obtain three-dimensional information on the organization of grana in chloroplasts in living plant tissue. Chloroplasts are ideally suited for such studies because their pigments show bright autofluorescence. The high-resolution stereo images bridge a gap between classic light microscopy and electron microscopy. Our preliminary observations on several plant species resemble most the early observations of Strugger (1951: Die Strukturordnung im Chloroplasten. Ber Deutsch Bot Ges 64: 69–83) and suggest that the 3-D technique might well be suitable to solve discrepancies in the interpretation of classical light microscopic and electron microscopic observations.Abbreviations 3-D three dimensional - CSLM confocal scanning laser microscopy - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DNA deoxyribonucleic acid  相似文献   

19.
This report compares the application of confocal laser scanning fluorescence microscopy with standard epifluorescence microscopy for the simultaneous localization of the neurotransmitters gamma-aminobutyric acid and glutamate in rat cerebral cortex. With this approach, sections of fixed rat brain are treated with primary antibodies against gamma-aminobutyric acid (rabbit-derived) and glutamate (mouse-derived), followed by treatment with fluorescein isothiocyanate-tagged donkey anti-rabbit and rhodamine-tagged goat anti-mouse secondary antibodies, respectively. The results demonstrate that images from immunofluorescence localizations with a confocal laser scanning microscope have superior resolution and contrast as a result of significant reductions of background flare caused by emission from out-of-focus structures in the field of view. The confocal microscope achieves this improved image quality by optically sectioning through a specimen at narrow planes of focus and then compiling a composite image of an object of interest. The composite image can be further enhanced by using various image processing options. The combined use of double immunofluorescence and confocal laser scanning microscopy provides an important means to simultaneously study the anatomical relationships of pre- and post-synaptic elements in a complex neural system.  相似文献   

20.
Scanning confocal microscopes offer improved rejection of out-of-focus noise and greater resolution than conventional imaging. In such a microscope, the imaging and condenser lenses are identical and confocal. These two lenses are replaced by a single lens when epi-illumination is used, making confocal imaging particularly applicable to incident light microscopy. We describe the results we have obtained with a confocal system in which scanning is performed by moving the light beam, rather than the stage. This system is considerably faster than the scanned stage microscope and is easy to use. We have found that confocal imaging gives greatly enhanced images of biological structures viewed with epifluorescence. The improvements are such that it is possible to optically section thick specimens with little degradation in the image quality of interior sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号