首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

2.
Milacemide (2-n-pentylaminoacetamide) is a secondary monoamine that in the brain is converted to glycinamide and glycine. This oxidative reaction was suspected to involve the reaction of monoamine oxidase (MAO). Using mitochondrial preparations from tissues that contain MAO-A and -B (rat brain and liver), MAO-A (human placenta), and MAO-B (human platelet and bovine adrenal chromaffin cell), it has been established that mitochondria containing MAO-B rather than MAO-A oxidize (H2O2 production and glycinamide formation) milacemide. The apparent Km (30-90 microM) for milacemide oxidation by mitochondrial MAO-B preparations is significantly lower than that for milacemide oxidation by mitochondrial MAO-A (approximately 1,300 microM). In vitro MAO-B (l-deprenyl and AGN 1135) rather than MAO-A (clorgyline) selectively inhibited the oxidation of milacemide. These in vitro data are matched by ex vivo experiments where milacemide oxidation was compared to oxidation of serotonin (MAO-A) and beta-phenylethylamine (MAO-B) by brain mitochondria prepared from rats pretreated with clorgyline (0.5-10 mg/kg) and l-deprenyl (0.5-10 mg/kg). Furthermore, in vivo experiment demonstrated that l-deprenyl selectively increased the urinary excretion of [14C]milacemide and the total radioactivity with a concomitant decrease of [14C]glycinamide. Such changes were not observed after clorgyline treatment, but were evident only at doses beyond clorgyline selectivity. The present data therefore demonstrate that milacemide is a substrate for brain MAO-B, and its conversion to glycinamide, further transformed to the inhibitory neurotransmitter, glycine, mediated by this enzyme may contribute to its pharmacological activities.  相似文献   

3.
Regional distribution of brain perfusion imaging agents, [131I]N,N,N′-trimethyl-N′-[2-hydroxy-3-methyl-5-iodobenzyl]1,3 propanediamine (HIPDM) and [131I]N-isopropyl-p-iodoamphetamine (IMP), was compared with the distribution of patterns of [14C]l-methionine and [14C]d-glucose in normal and tumour bearing rat brains using autoradiographic technique. There was higher concentration of the radiopharmaceutical in grey than white matter in normal rat brain. Autoradiographs of brain tumour sections showed very low uptake of [131I]HIPDM and [131I]IMP as compared to normal brain tissue. There was moderate concentration of [14C]d-glucose and avid uptake of [14C]l-methionine in tumours. Autoradiographic study is useful for evaluating distribution patterns of radiopharmaceuticals.  相似文献   

4.
The inhibition of the A and B forms of monoamine oxidase (MAO) inside and outside serotonergic, noradrenergic, and dopaminergic synaptosomes in homogenates of rat hypothalamus or striatum by clorgyline, a selective and irreversible MAO-A inhibitor, and selegiline, a selective and irreversible MAO-B inhibitor, was examined. Intrasynaptosomal deamination at low concentrations of the substrates [14C]5-hydroxytryptamine ([14C]5-HT; 0.1 microM), [14C]noradrenaline (0.25 microM), [14C]3,4-dihydroxyphenylethylamine ([14C]dopamine; 0.25 microM), and [14C]tyramine (0.25 microM) was hindered by selective uptake inhibitors (citalopram, maprotiline, and amfonelic acid) in the incubation media. Thus, the difference between the deamination of 14C-amine in the absence and presence of the appropriate selective uptake inhibitor provided a measure of deamination in the specific aminergic synaptosomes. This was verified by determining the loss of MAO activity within noradrenergic and serotonergic systems after degeneration of the nerve terminals by the neurotoxins N-chloroethyl-N-ethyl-2-bromobenzylamine and p-chloroamphetamine. Results with the two inhibitors revealed that the A and B forms were responsible for 80 and 20%, respectively, of the deamination of [14C]5-HT within serotonergic synaptosomes from the hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes from the hypothalamus and that of [14C]dopamine and [14C]tyramine within the striatal dopaminergic synaptosomes were due to MAO-A. About 10% of the deamination of [14C]noradrenaline, [14C]dopamine, and [14C]tyramine outside the noradrenergic or dopaminergic synaptosomes was brought about by the B form, with the remainder being deaminated by MAO-A.  相似文献   

5.
The effects of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and 2,4-dinitrophenol (DNP) on membrane vesicles of Micrococcus denitrificans were compared. DMO did not affect the ability of these vesicles to accumulate glycine in the presence of the substrate l-lactate. Both glycine transport and l-lactate oxidation were inhibited by DNP; the concentration of DNP required for inhibition of respiration was fortyfold higher than that required for inhibition of transport. Using the technique of equilibrium dialysis with membrane residues from which the lipid had been extracted, no binding of [14C]DMO to membrane protein was detected. However, [14C]DNP did bind to membrane protein. At 100 μm DNP, 12% of the [14C]DNP was bound, equivalent to 1.56 nmol/mg protein. The pH inside vesicles respiring on l-lactate was calculated from the distribution of [14C]DMO and was found not to differ from the pH of the suspending buffer. The mechanism of action of DNP on active transport in M. denitrificans vesicles appears not to involve proton conduction.  相似文献   

6.
The mechanism of biosynthesis of 4-methyl-5-β-hydroxyethyl thiazole, the thiazole moiety of thiamine was studied in Salmonella typhimurium. Using the adenosine derepression technique the incorporation of various 14C-labeled precursors was determined. We found that [Me-14C]methionine, [2-14C]methionine, [U-14C]alanine, and [2-14C]glycine were not incorporated whereas [2-14C]-tyrosine was incorporated. Degradation of the 4-methyl-5-β-hydroxyethyl thiazole obtained after [2-14C]tyrosine incorporation revealed that all of the activity was located on carbon-2. These findings are discussed and compared with previous findings concerning 4-methyl-5-β-hydroxyethyl thiazole biosynthesis.  相似文献   

7.
Chromatography of soluble polyphenols of p-fluorophenylalanine-sensitive and -resistant tobacco cells revealed that the 10-fold increased level found in the resistant line was largely due to the accumulation of two unidentified polyphenols. The uptake of Phe-[U-14C] and Tyr-[U-14C] by the resistant line was ca 10 % that by the sensitive line. About 90 % of the phenylalanine-[14C] which was taken up by both cell lines could be accounted for as free phenylalanine in protein, soluble polyphenols or CO2. The fate of Tyr-[14C] was similar to that of phenylalanine except that the incorporation was into insoluble polymeric forms of polyphenols rather than into soluble polyphenols. The resistant line incorporated 9-times more phenylalanine-[14C] into soluble polyphenols than did the sensitive line. The different 14C-aromatic amino acid accumulation and incorporation patterns noted with the two cell lines indicates that there are different active pools. Differential uptake rates by the two cell lines might affect the distribution of the absorbed amino acid among the different pools.  相似文献   

8.
Specifically radiolabeled [14C-lignin]lignocelluloses were prepared from the aquatic macrophytes Spartina alterniflora, Juncus roemerianus, Rhizophora mangle, and Carex walteriana by using [14C]phenylalanine, [14C]tyrosine, and [14C]cinnamic acid as precursors. Specifically radiolabeled [14C-polysaccharide]lignocelluloses were prepared by using [14C]glucose as precursor. The rates of microbial degradation varied among [14C-lignin]lignocelluloses labeled with different lignin precursors within the same plant species. To determine the causes of these differential rates, [14C-lignin]lignocelluloses were thoroughly characterized for the distribution of radioactivity in nonlignin contaminants and within the lignin macromolecule. In herbaceous plants, significant amounts (8 to 24%) of radioactivity from [14C]phenylalanine and [14C]tyrosine were found associated with protein, although very little (3%) radioactivity from [14C]cinnamic acid was associated with protein. Microbial degradation of radiolabeled protein resulted in overestimation of lignin degradation rates in lignocelluloses derived from herbaceous aquatic plants. Other differences in degradation rates among [14C-lignin]lignocelluloses from the same plant species were attributable to differences in the amount of label being associated with ester-linked subunits of peripheral lignin. After acid hydrolysis of [14C-polysaccharide]lignocelluloses, radioactivity was detected in several sugars, although most of the radioactivity was distributed between glucose and xylose. After 576 h of incubation with salt marsh sediments, 38% of the polysaccharide component and between 6 and 16% of the lignin component (depending on the precursor) of J. roemerianus lignocellulose was mineralized to 14CO2; during the same incubation period, 30% of the polysaccharide component and between 12 and 18% of the lignin component of S. alterniflora lignocellulose was mineralized.  相似文献   

9.
1. A study has been made of the incorporation of carbon from [14C]formaldehyde and [14C]formate by cultures of Pseudomonas methanica growing on methane. 2. The distribution of radioactivity within the non-volatile constituents of the ethanol-soluble fractions of the cells, after incubation with labelled compounds for periods of up to 1min., has been analysed by chromatography and radioautography. 3. Radioactivity was fixed from [14C]formaldehyde mainly into the phosphates of the sugars, glucose, fructose, sedoheptulose and allulose. 4. Very little radioactivity was fixed from [14C]formate; after 1min. the only products identified were serine and malate. 5. The distribution of radioactivity within the carbon skeleton of glucose, obtained from short-term incubations with [14C]methanol of Pseudomonas methanica growing on methane, has been investigated. At the earliest time of sampling over 70% of the radioactivity was located in C-1; as the time increased the radioactivity spread throughout the molecule. 6. The results have been interpreted in terms of a variant of the pentose phosphate cycle, involving the condensation of formaldehyde with C-1 of ribose 5-phosphate to give allulose phosphate.  相似文献   

10.
Effect of External pH on the Internal pH of Chlorella saccharophila   总被引:6,自引:3,他引:3       下载免费PDF全文
Gehl KA  Colman B 《Plant physiology》1985,77(4):917-921
The overall internal pH of the acid-tolerant green alga, Chlorella saccharophila, was determined in the light and in the dark by the distribution of 5,5-dimethyl-2-[14C]oxazolidine-2,4-dione ([14C]DMO) or [14C]benzoic acid ([14C]BA) between the cells and the surrounding medium. [14C]DMO was used at external pH of 5.0 to 7.5 while [14C]BA was used in the range pH 3.0 to pH 5.5. Neither compound was metabolized by the algal cells and intracellular binding was minimal. The internal pH of the algae obtained with the two compounds at external pH values of 5.0 and 5.5 were in good agreement. The internal pH of C. saccharophila remained relatively constant at pH 7.3 over the external pH range of pH 5.0 to 7.5. Below pH 5.0, however, there was a gradual decrease in the internal pH to 6.4 at an external pH of 3.0. The maintenance of a constant internal pH requires energy and the downward drift of internal pH with a drop in external pH may be a mechanism to conserve energy and allow growth at acid pH.  相似文献   

11.
Cowan AK  Rose PD 《Plant physiology》1991,97(2):798-803
The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed.  相似文献   

12.
The storage triacylglycerols of meadowfoam (Limnanthes alba) seeds are composed essentially of C20 and C22 fatty acids, which contain an unusual Δ5 double bond. When [1-14C]acetate was incubated with developing seed slices, 14C-labeled fatty acids were synthesized with a distribution similar to the endogenous fatty acid profile. The major labeled product was cis-5-eicosenoate, with smaller amounts of palmitate, stearate, oleate, cis-5-octadecenoate, eicosanoate, cis-11-eicosenoate, docosanoate, cis-5-docosenoate, cis-13-docosenoate, and cis-5,cis-13-docosadienoate. The label from [14C]acetate and [14C]malonate was used preferentially for the elongation of endogenous oleate to produce cis-[14C]11-eicosenoate, cis-13-[14C]docosenoate, and cis-5,cis-13-[14C]docosadienoate and for the elongation of endogenous palmitate to produce the remaining C20 and C22 acyl species. The Δ5 desaturation of the preformed acyl chain and chain elongation of oleate and palmitate were demonstrated in vivo by incubation of the appropriate 1-14C-labeled free fatty acids. Using [1-14C]acyl-CoA thioesters as substrates, these enzyme activities were also demonstrated in vitro with a cell-free homogenate.  相似文献   

13.
Radioactive polysaccharide was synthesized when uridine 5′-(α-d-[U-14C]apio-d-furanosyl pyrophosphate) (containing some uridine 5′-(α-d-[U-14C]xylopyranosyl pyrophosphate)) was incubated with a particulate enzyme preparation from Lemna minor. Characterization experiments established that the product: (i) was insoluble in methanol and water, (ii) contained d-[U-14C]apiose (75%) and d-[U-14C]xylose (25%), and (iii) was soluble in 1% ammonium oxalate. The material solubilized by ammonium oxalate (solubilized product): (i) was separated into five fractions by column chromatography with diethylaminoethyl-Sephadex (DEAE-Sephadex), (ii) contained [U-14C]apiobiose side chains that were removed by hydrolysis at pH 4, and (iii) was degraded by fungal pectinase. Both d-[U-14C]apiose residues of the [U-14C]apiobiose side chains were synthesized in vivo since radioactivity was distributed equally between the two residues. The presence of uridine 5′-(α-d-galactopyranosyluronic acid pyrophosphate) during synthesis of radioactive polysaccharide resulted in: (i) an increase in the incorporation of radioactive d-[U-14C]apiose into solubilized product, (ii) an increase in the ratio of d-[U-14C]apiose to d-[U-14C]xylose present in solubilized product, (iii) an increase in the amount of [U-14C]apiobiose plus d-[U-14C]apiose released from the solubilized product by hydrolysis at pH 4, and (iv) a tighter binding of the solubilized product to DEAE-Sephadex. These results show that apiogalacturonans similar to or the same as those synthesized by the intact plant were synthesized in the particulate enzyme preparation isolated from L. minor. [14C]Apiogalacturonans completely free of d-[U-l4C]xylose were not isolated. The [14C]apiogalacturonan with the least d-[U-14C]xylose still had 4.8% of its radioactivity present in d-[U-14C]xylose. The possibility remains that d-xylose is a normal constituent of the apiogalacturonans of the cell wall of L. minor.  相似文献   

14.
Homogenates of adult Schistosoma mansoni contain enzymes which transferred [14C]mannose, [14C]glucose, and [14C]galactose from GDP-[U-14C]mannose, UDP-[U-14C]glucose, and UDP-[U-14C]galactose respectively to a lipid acceptor; in comparison, free [14C]mannose, GDP-[U-14C]fucose, and UDP-[U-14C]acetyl-glucosamine were poorly transferred. The lipid acceptor is believed to be an intermediate in the glycosylation of the worm's glycoproteins and in the biosynthesis of oligosaccharides and glycolipids. The tegument of adult worms was isolated by the freeze-thaw procedure and sugars associated with macromolecules in this fraction were analyzed; the major monosaccharide components were glucose, galactose, and mannose. These results suggest that the mechanism of glycosylation of the adult schistosome's tegumental macromolecules may occur through the glycosyl transferase system. The schistosome mannosyl transferase (EC 2.4.1), which is membrane bound was solubilized with 0.1% Triton X-100 without loss of activity; after density gradient centrifugation there was a peak of enzymic activity in a region of density 1.08, which could not be associated with any particular organelle.  相似文献   

15.
[14C]Atrazine (2-chloro-4-[ethylamino]-6-[isopropylamino]-s-triazine) and [14C]glyphosate (N-[phosphonomethyl]glycine) were xylem fed to sunflower shoots at 100 micromolar for 1 hour in the light, then placed in the dark at 100% relative humidity for 1, 4, 7, or 10 hours. The distribution of atrazine and glyphosate between shoot parts, in the leaves, and between the aoplast and symplast of the leaf was determined. The apoplastic concentrations and distribution patterns of atrazine and glyphosate in the leaves were evaluated using a pressure dehydration technique, our results were compared to the previously reported distribution patterns of the naturally occurring apoplastic leaf solutes, and the apoplastic dye PTS (trisodium 3-hydroxy-5,8,10-pyrenetrisulfonate). The pattern of atrazine and glyphosate distribution in the shoot, and between the leaf apoplast and symplast, was found to reflect the potential of these herbicides to enter the shoot symplast. The results of this study are discussed with respect to current theories of xenobiotic transport in plants, and have been found to be consistent with the intermediate permeability hypothesis for xenobiotic transport.  相似文献   

16.
Calf brain membranes have previously been shown to enzymatically transfer N-acetyl[14C]glucosamine from UDP-N-acetyl[14C]glucosamine into N-acetyl[14C]glucosami-nylpyrophosphoryldolichol, N,N′-diacetyl[14C]chitobiosylpyrophosphoryldolichol and a minor labeled product with the chemical and chromatographic properties of a [14C]trisaccharide lipid (Waechter, C. J., and Harford, J. B. (1977) Arch. Biochem. Biophys.181, 185–198). This paper demonstrates that incubating calf brain membranes containing endogenous, prelabeled N-acetyl[14C]glucosaminyl lipids with unlabeled GDP-mannose enhances the formation of the [14C]trisaccharide lipid. The intact [14C]trisaccharide lipid behaves like a dolichol-bound trisaccharide, in which the glycosyl group is linked via a pyrophosphate bridge, when chromatographed on SG-81 paper or DEAE-cellulose. Mild acid treatment releases a water-soluble product that comigrates with authentic β-Man-(1→4)-β-GlcNAc(1→4)-GlcNAc. The free [14C]trisaccharide is converted to N,N′-diacetyl[14C]chitobiose by incubation with a highly purified β-mannosidase. These findings indicate that the trisaccharide lipid formed by calf brain membranes is β-mannosyl-N,N′-diacetylchito-biosylpyrophosphoryldolichol. The two glycosyltransferases responsible for the enzymatic conversion of the N-acetylglucosaminyl lipid to the trisaccharide lipid have been studied using exogenous, purified [14C]glycolipid substrates. Calf brain membranes enzymatically transfer N-acetylglucosamine from UDP-N-acetylglucosamine to exogenous N-acetyl[14C] glucosaminylpyrophosphoryldolichol to form [14C]disaccharide lipid. The biosynthesis of [14C]disaccharide lipid is stimulated by unlabeled UDP-N-acetylglucosamine under conditions that inhibit N-acetylglucosaminylpyrophosphoryldolichol synthesis. Unlike the formation of N-acetylglucosaminylpyrophosphoryldolichol the enzymatic addition of the second N-acetylglucosamine residue is not inhibited by tunicamycin. Exogenous purified [14C] disaccharide lipid is enzymatically mannosylated by calf brain membranes to form the [14C] trisaccharide lipid. The formation of the [14C]trisaccharide lipid from exogenous [14C] disaccharide lipid is stimulated by unlabeled GDP-mannose and Mg2+, and inhibited by EDTA. Exogenous dolichyl monophosphate is also inhibitory. These results strongly suggest that the calf brain mannosyltransferase involved in the synthesis of the trisaccharide lipid requires a divalent cation and utilizes GDP-mannose, not mannosylphosphoryldolichol, as the direct mannosyl donor.  相似文献   

17.
The distribution of incorporated synthetic cytokinins (N6-[8-14C]benzyladenine ([8-14C]bzl6Ade) and N6[8-14C]furfuryladenine ([8-14C]fr6Ade) in ribosomal RNA prepared from tobacco callus (Nicotiana tabacum L. var. Wis. No. 38) grown in the presence of one of these for 25 or 26 days has been studied. The rRNA of tissue supplied with [8-14C]bzl6Ade or [8-14C]fr6Ade was fractionated by methylated albumin-Kieselguhr column chromatography and preparative gel electrophoresis, respectively. In each case about 80% of the incorporated cytokinin was recovered as the ribonucleoside [8-14C]bzl6A or [8-14C]fr6A in the rRNA peak after the fractionations. [8-14C]fr6A was found associated with both the 18S and 25S rRNA components in quantities roughly proportional to their 260 nm absorbance. This pattern of apparently nonspecific association was not affected by prior denaturation of the RNA with formamide.  相似文献   

18.
The transfer of mannose from GDP[14C]mannose to lipid and to insoluble polymer by a particulate preparation of Phaseolus aureus has been investigated. The evidence favours the lipid being a prenol phosphate mannose. Of a range of prenol phosphates tried, betulaprenol phosphate was the most effective exogenous acceptor of mannose. Most of the insoluble [14C]polymer formed was glycoprotein in nature although small quantities of 14C were associated with glucomannan and galactoglucomannan fractions. Time studies failed to reveal a typical precursor-product relationship between the lipid and polymer fractions but on incubation of [14C]mannolipid with the particulate fraction a small transfer (0·5–0·7%) of [14C] to polymer was detected. p-Hydroxymercuribenzoate inhibited (by 90%) the transfer of [14C] from GDP[14C]-mannoseto polymer and simultaneously increased (3-fold) the [14C] recovered in the lipid fraction. The effect was nullified by mercaptoethanol. Attempts to solubilize the transfer system were only partially successful. The formation of a chromatographically identical mannolipid was demonstrated in particulate fractions of Codium fragile and tomato roots.  相似文献   

19.
About ScienceDirect 《BBA》1978,504(3):466-467
Culture of Trypanosoma cruzi (Tulahuen strain) in the presence of ethidium bromide (1–20 μg/ml) resulted in dyskinetoplasty and inhibition of growth, to an extent depending on the dye concentration and the medium composition. The ethidium bromide-induced dyskinetoplasty caused a decrease of (a) the cytochrome content of epimastigotes (a,a3 and b species); (b) the rate of respiration (endogenous or supported by D-glucose); and (c) the rate of production of 14CO2 from [2-14C]acetate and [1-14C]glucose. [2-14C]Acetate oxidation to 14CO2 was affected by dyskinetoplasty more than [1-14C]glucose oxidation, particularly at the exponential growth phase. With dyskinetoplastic epimastigotes, diminution of 14CO2 production from [2-14C]acetate largely exceeded that of oxygen uptake, while with [1-14C]glucose, 14CO2production and respiration were affected to about the same extent. Dyskinetoplasty also decreased the incorporation of [2-14C]acetate carbon into intermediates of the tricarboxylic acid cycle and related amino acids, and modified the distribution pattern of 14C in accordance with the decrease of respiration. Reduction of cytochrome content of epimastigotes by restriction of heme compounds during growth decreased 14CO2 production from [2-14C]acetate, like the ethidium-induced dyskinetoplasty. The same occurred after inhibition of electron transfer by antimycin and cyanide, though to a much more significant extent, thus confirming the functional association of electron transport at the mitochondrial cytochrome system of T. cruzi and the enzymatic reactions of the tricarboxylic acid cycle.  相似文献   

20.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号