首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum is a toxic metal whose complex aquatic chemistry, mechanisms of toxicity and trophic transfer are not fully understood. The only isotope of Al suitable for tracing experiments in organisms—26Al—is a rare, costly radioisotope with a low emission energy, making its use difficult. Gallium shares a similar chemistry with Al and was therefore investigated as a potential substitute for Al for use in aquatic organisms. The freshwater snail, Lymnaea stagnalis was exposed to either Al or Ga (0.0135 mM) under identical conditions for up to 40 days. Behavioural toxicity, metal accumulation in the tissues, and sub-cellular partitioning of the metals were determined. Al was more toxic than Ga and accumulated to significantly higher levels in the soft tissues (P < 0.05). The proportion of Al in the digestive gland (DG; detoxificatory organ) relative to other tissues was significantly lower than that of Ga (P < 0.05) from day 14 onwards. There were also differences in the proportions of Al and Ga associated with heat stable proteins (HSPs) in the digestive gland, with significantly more HSP present in the DGs of snails exposed to Al, but significantly less Al than Ga associated with the HSP per unit mass protein present. From this evidence, we conclude that Ga may be of limited use as a tracer for Al in animal systems.  相似文献   

2.
The active biomonitoring method was used to examine the changes in heavy-metal (Fe, Zn, Cu, Cd, Mn, Pb, and Ni) contents in the organs (muscle, gonads, mantle, gills, digestive gland, and kidney) of the mussels Crenomytilus grayanus and Modiolus modiolus. The dynamics of trace element concentrations in mussel organs during the experiment were compared with their subcellular distribution. The defense strategy of M. modiolus consisted of the threshold accumulation of toxic metals in all organs followed by their excretion, whereas the strategy of C. grayanus involved short-term isolation from adverse environmental influence. Under chronic pollution, in C. grayanus the main loads occurred in the digestive gland and kidney. Under acute changes in environmental conditions, the processes of regulation (detoxification/excretion) of Fe, Mn, and Pb in this species were impaired substantially.  相似文献   

3.
1. Freshwater unionids (Anodonta anatina L. and Unio pictorum L.) were exposed to aluminium (300 and 900 μg/l, nominal) in continuous (3 weeks) and fluctuating (24 days) acid exposures.2. In addition, accumulation was monitored for 2 weeks under semi-static acid (pH4-5) and circumneutral (pH 6.6-8.3) conditions in hard (35 mg Ca/l) and soft water (3.5 mg Ca/l).3. In addition, a fluctuating exposure of 24 days, consisting of three intermittent pulses which combined low pH (4–5) and high Al (900 μg/l) concentration, was performed.4. The various organs of A. cygnea, collected from a watershed with relatively high heavy metal concentrations, were analyzed for their Al and Cd concentrations.5. The ultimate order of the Al and Cd concentration in these clams was identical: kidney ≥ midgut gland ≥ rest ≥ gill ≥ mantle.6. During the 3 weeks of exposure, the Al concentration in the gills and kidney increased linearly, and saturation level was not reached.7. The Al concentration in the calcium concretion material isolated from the gills was lower than that of the whole organ.8. An elimination period of 12 weeks was needed to reach the background level of Al in the gills, whereas in the kidney the initial Al concentration was reached after 4 weeks of elimination.9. In both species, the ambient pH had a significant effect on the Al accumulation in the gills, whereas the effect of the water hardness was only of minor importance.10. Rapid elimination of the Al accumulated in the gills of U. pictorum during the episodic 3-day exposure was recorded.  相似文献   

4.
The accumulation of cadmium, copper and lead and their effects on aspartate and alanine aminotransferases in digestive gland, gills, foot and soft body in the clam Ruditapes philippinarum were examined. The animals were exposed to different concentrations: Cd (200–600 μg·l−1), Pb (350–700 μg·l−1) and Cu (10–20 μg·l−1) for 7 days. The highest concentrations were found in digestive gland for cadmium and copper, and in gills for lead, and the lowest values were observed in the foot. Aspartate aminotransferase activity (AST), in general, was not inhibited by cadmium, lead or copper during the exposure. Only in clams exposed to cadmium (600 μg·l−1, 7 days) and copper (20 μg·l−1, 5 days) were observed significant differences (P<0.05) in foot and gills, respectively, with respect to control. In the case of alanine aminotransferase activity (ALT), significant differences were observed for cadmium and lead in treated animals with respect to control. With regard to copper, a decrease in ALT was observed in gills and foot exposed to 20 μg·l−1. A significant correlation (P<0.05) was observed between ALT and metal accumulation for cadmium, copper and lead in gills. In the case of soft body, only cadmium and lead showed a significant correlation. In summary, R. philippinarum can be considered a bioindicator species for cadmium and lead accumulation and ALT could be useful as biomarker of sublethal stress for these metals in soft tissues and gills. Only gills can be considered an adequate target tissue for copper.  相似文献   

5.
The use of zinc oxide nanoparticles (nanoZnO) as sunscreens has raised concerns about their safety and release in the aquatic environment through swimming activities and within municipally treated wastewaters. This study's purpose was to examine the effects of nanoZnO on the elemental composition (metallome) in exposed freshwater mussels, Elliptio complanata. Mussels were exposed for 21 days to an environmentally realistic (low) concentration (2 μg/L) of nanoZnO and zinc chloride. The mussels were also exposed to a physically and chemically treated municipal effluent (ME), both alone and in the presence of both forms of Zn. The metallome profile was characterized by the following 15 elements in gills, digestive gland and gonad tissues: Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Se, V and Zn. The levels of metallothioneins (MT) and lipid peroxidation (LPO) in the digestive gland were also measured as biomarkers of toxic effects. The data revealed that exposure to nanoZnO increased the total levels of Zn, MT and LPO in the digestive gland. Discriminate function analysis revealed that the digestive gland responded the most to exposure to either nanoZnO or Zn2 +. For nanoZnO, the observed changes in Al, As and Mo in the digestive gland offered the best discrimination from dissolved Zn2 +. Co-exposure of nanoZnO with the ME changed the metallome profile closer to dissolved Zn2 +, suggesting a common interaction site within the ME. This was observed in changes in Ni, Cu, Se and Zn in the digestive gland of exposed mussels. Canonical analysis of essential and non-essential elements revealed that exposure to nanoZnO increased the relationships between LPO and the sum of essential elements in the digestive gland. Conversely, exposure to dissolved Zn2 + and the ME decreased the relationship between the sum of non-essential elements and LPO and MT. In conclusion, the use of a “metallomic” approach was used to discriminate changes following exposure to nanoZnO and dissolved Zn in freshwater mussels and provided insights into the interaction of forms of Zn in ME towards mussels.  相似文献   

6.
Foliose coralline algae form a large proportion of the diet of juvenile Panulirus cygnus George at some locations but its rôle in the diet is not clear. In the laboratory, early post-moult rock lobsters fed Corallina cuvieri Lamouroux, labelled with 45Ca primarily in the algal skeleton showed significant uptake of calcium compared with lobsters maintained in sea water containing dissolved 45Ca. Shortly after ingestion by the rock lobsters the isotopic calcium was distributed through all the soft tissues examined and the exoskeleton. After a 5-day period isotopic calcium levels had fallen in most soft tissues but were not significantly lower in the digestive gland, the mid-gut or the exoskeleton. The data indicate that calcium in the algal skeleton of dietary C. cuvieri is absorbed by the digestive system and may be important in the postmoult re-mineralization of the exoskeleton.  相似文献   

7.
This investigation attempts to determine the usefulness of autometallography to localise particular metals in certain key tissues of molluscs exposed to metal mixtures. For this purpose, winkles (Littorina littorea) removed from shell were exposed to very high concentrations of either copper (Cu), zinc (Zn) or a mixture of both metals (Cu&Zn) dissolved in sea-water for short periods of time. Protein-bound metals were detected by autometallography as black silver deposits (BSD) on histological sections of gills, foot, mantle, digestive gland/gonad complex, stomach and kidney. Copper was localised within cytoplasmic granules of gill ciliated cells, nephrocytes and stomach epithelial cells as well as within digestive cell lysosomes. Zinc was essentially found in the basal lamina (histological sense) of gill, stomach, kidney and digestive gland epithelia. BSD were also evidenced in cytoplasmic granules of pore cells present in parenchymal connective tissue of mantle, foot, gill, digestive gland and stomach. Copper and zinc concentrations were additionally calculated for the whole soft body as well as for certain organs by atomic absorption spectrophotometry (AAS). According to AAS, a synergistic phenomenon would contribute to increase the rate of Cu and Zn accumulation in presence of each other. However, after exposure to Cu&Zn autometallography did not evidence any synergistic phenomenon, and Cu and Zn were localised in their respective accumulation sites. In conclusion, autometallography might indicate the presence of certain metals in the environment irrespective of factors, such as "metal-metal interaction-like" phenomena, affecting metal concentrations in soft tissues.  相似文献   

8.
Oysters display a diversity of uptake mechanisms for metallic elements and distribution in the target organs, namely gills and the digestive gland. Various tissues of the flat oyster, Ostrea edulis, were studied following experimental exposure to 0.025 m (5 g l) of mercury, for up to 34 days. All animals survived the treatment. Data indicate Hg accumulation in gill tissue with a maximum concentration of 38.76 g g dry weight after 25 days of exposure. Hg levels were lower in remaining tissues, in which the maximum concentration (18.47 mg g-1 dry weight) was reached after 18 days of exposure. After these times, concentration in both tissues decreased. Results show that oysters can accumulate Hg from the environment, without their survival being affected during the experimental period. Structural alteration of epithelial tissues of gill and digestive gland of flat oyster was comparable with effects described for other metallic elements in bivalve molluscs. Interstitial tissue was disorganized in the digestive gland, and ultrastructural changes in intracellular endomembranes were detected in epithelial cells of the digestive gland after 18 days of treatment. After 25 days, absorptive epithelial cells of gills showed highly dilated, swollen microvilli. These intracellular alterations are parameters of the incipient response to the accumulation of mercury.  相似文献   

9.
We conducted a comparative analysis of the fatty acid (FA) composition and the ratios of stable isotopes of carbon (δ13C) and nitrogen (δ15N) in soft tissues of ten species of bivalve mollusks collected simultaneously on adjacent biotopes in shallow Vostok Bay (the Sea of Japan). Comparison of the FA composition of the lipids of digestive gland and all soft tissues showed that the percentages of C16 and C18 marker FAs were greater in the digestive gland and the levels of marker C20 and C22 FAs were, in most cases, higher in soft tissues. According to the results of cluster analysis and principal component analysis, four groups of samples were identified with a similarity of the FA composition of more than 80% within groups. The carbon stableisotope ratios varied within very wide limits in the studied species of bivalves; the range of δ13C variations was 8.1‰. The range of δ15N variations was much smaller, 2.5‰. Two pairs of species of mollusks (Saxidomus purpurataProtothaca euglypta and P. jedoensisDiplodonta semiasperoides) did not differ in the values of both δ15N and δ13C, the remaining species differed in at least one of these parameters. The greatest similarity of the FA composition and stable-isotope ratios was found in species that inhabit similar substrates, except Macoma irus and D. semiasperoides. Particularly marked differences in the FA composition and stable-isotope ratios were found between a filter-/surface deposit-feeder M. irus and filter-feeders Arca boucardi and Mytilus coruscus that live next to this species.  相似文献   

10.
Relatively little is known about how gold nanoparticles (GNP) might interact in vivo with marine organisms. Mytilus edulis was exposed (24 h) to ~ 15 nm GNP, menadione and both compounds simultaneously (GNP/menadione). GNP was detected by inductively coupled plasma-optical emission spectroscopy mainly in digestive gland of samples exposed to GNP though not GNP/menadione, perhaps due to impaired feeding. Thioredoxin reductase activity and malondialdehyde levels were determined in all tissues. Thioredoxin reductase inhibition was detected only in digestive gland exposed to menadione whilst malondialdehyde levels did not vary in response to treatment in all tissues. GNP caused a decrease in the reduced/oxidized glutathione ratio in digestive gland, but no difference was found in other tissues or for other treatments. One dimensional electrophoresis of proteins containing thiol groups was performed in all tissues and revealed a reduction in protein thiols for all treatments in digestive gland. Two dimensional electrophoresis of digestive gland extracts, from GNP and control groups, showed decreased levels of thiol proteins in response to GNP which we attribute to oxidation. Our results suggest that GNP causes a modest level of oxidative stress sufficient to oxidize thiols in glutathione and proteins but without causing lipid peroxidation or induction of thioredoxin reductase activity.  相似文献   

11.
This study investigated the distribution of cadmium (Cd) and the protein level of metallothionein (MT) and examined the relationship of Cd accumulation and the MT concentration in different tissues of freshwater mussel Anodonta woodiana following Cd treatment. The mussels were exposed to Cd (4.21, 8.43, 16.86, 33.72 and 67.45 mg L-1) for 24, 48, 72 and 96 h, respectively. After Cd treatment, the gills, mantle, foot, visceral mass and digestive gland tissues were collected for analysis. We found that, in the controls, Cd distributed in all tissues in the concentration order of gills>mantle>foot>visceral mass>digestive gland. Upon Cd treatment, Cd concentration significantly increased in all tissues. The highest Cd accumulation was found in the digestive gland, which was 0.142 mg g-1 (P<0.05). MT levels in the gills and mantle of the mussels increased significantly (P<0.05), which were in positive correlation with Cd accumulation in the tissues (P<0.05). In conclusion, our results demonstrated a correlation between Cd accumulation and MT up-regulation in gills and mantle of the mussels after Cd treatment. It is suggested that the protein level of MT in gills and mantle of Anodonta woodiana is a good biomarker for Cd contamination.  相似文献   

12.
1. Reduced glutathione (GSH), glutathione reductase (GSSG-reductase) and glutathione peroxidase (GSH-peroxidase) activities were measured in the gill and digestive gland of Rangia cuneata.2. Substantial GSH concentrations were found in both gill (820 ± 80 nmole/g tissue) and digestive gland (930 ± 130 nmole/g tissue). The digestive gland exhibited 2.5-fold greater GSSG-reductase activities and 0.5-fold lower GSH-peroxidase activities relative to the gill.3. In vivo exposure to t-butyl hydroperoxide (BHP) elicited a dose-dependent increase (P < 0.05) in lipid peroxidation in both tissues. Lipid peroxidation occurred earlier and to a greater extent in the digestive gland versus the gill. GSH concentrations in both tissues were unaffected by BHP exposure.4. The study results indicate that gill and digestive gland differ in susceptibility to BHP induced oxidative damage, and the difference is accounted for by differences in tissue GSH metabolism.  相似文献   

13.
Mussels were translocated from a shell-fish breeding area (Sète, on the French Mediterranean coast) to sites exposed to trace element inputs in April 2000. They were recovered 3 months later. Whole soft tissues from all of the sites (n = 97) were analysed for arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. Metallothioneins (MTs) were also measured in the digestive gland and in the remaining tissues (allowing calculation of whole soft tissue concentrations) at 22 of the 97 sites. MT concentrations in the digestive gland and the whole soft tissues were strongly correlated. The condition index varied with food availability at different sites. This did not influenced MT concentrations in the whole soft tissues, whereas the condition index was negatively correlated to trace element concentrations. A model is proposed to minimize this influence of condition. Metal concentrations adjusted using this model showed significant correlations with MT levels for those metals (cadmium, copper, nickel and zinc) that are known to bind to this protein, with the exception of mercury. Even in moderately contaminated sites, measurement of the MT level in the soft tissues of mussels was generally able to discriminate between different levels of contamination, allowing the use of a simplified procedure compared with dissection of the digestive gland. It is recommended to avoid translocation and sampling during the reproductive period, which is well documented for commercial species such as Mytilus sp.  相似文献   

14.
The purpose of this study was to investigate the long-term bioaccumulation and elimination of Cd, Pb, Mn, Zn and Fe by Pinna nobilis tissues after their 90 day-transplantation period at Téboulba fishing harbor. During the transplantation period, the Cd, Pb, Mn, Zn and Fe concentrations in the different tissues of the mussels were measured before and after exposure period. Metal (Cd, Pb, Mn, Zn and Fe) accumulation in P. nobilis mussels varied depending on the analyzed tissue and the caging times. Notable differences in Cd, Pb, Mn, Zn and Fe accumulation patterns within the digestive gland, gills and muscle were found and may be due to the ability of each tissue to accumulate metals. During the depuration phase, the elimination of Cd, Pb, Mn, Zn and Fe depended on the target tissue and the metal speciation. Cd, Pb, Mn and Fe were eliminated rapidly from one organ and increased in other when compared to those of 90 day transplanted mussels. The increase of metal loads during the elimination phase is not clear and particularly what kind of processes is responsible for such response. However, it is reasonable to assume that metals increase is related to the existence of an accumulation/detoxification mechanism, which involves the transport of metals from an organ to another. The data obtained indicate that because of the significantly high quantities of Cd, Pb, Mn, Zn and Fe accumulated during the exposure phase, the transplanted mussels are suitable bioindicators for monitoring trace metals in marine ecosystem.  相似文献   

15.
The metabolism of iron (Fe) has been shown to interact with that of aluminum (Al) in relation to intestinal absorption, transport in the blood plasma, and the induction of lipid peroxidation and cellular damage. Also, dietary supplementation with citrate has been shown to increase the absorption of both metals and, in the presence of high intakes of Fe and Al, leads to excessive accumulation of both metals in the body. In this study, the likely interaction between Al and internal Fe metabolism was investigated using rats fed diets that were either deficient, sufficient, or loaded with Fe, with or without the addition of Al and sodium citrate. These diets commenced when the rats were 4 wk old and were continued for 9–11 wk. At that time, Fe metabolism as assessed by measurement of organ uptake of59Fe and125I-transferrin, after iv injection of transferrin labeled with both isotopes, plus measurement of tissue concentrations of nonheme Fe and Al. The Fedeficient diet and Fe-loaded diet led to states of Fe deficiency and Fe overload in the rats, and supplementation of the diet with Al increased Al levels in the kidneys, liver, and femurs, but, generally, only when the diet also contained citrate. Neither Al nor citrate supplementation of the diet had any effect on nonheme Fe concentrations in the liver, kidney, or brain, or on the uptake of59Fe or125I-transferrin by liver, kidney, brain, or spleen. Only with the femurs was a significant effect observed: increased59Fe uptake in association with increased Al intake. Therefore, using this animal model, there was little evidence for interaction between Fe and Al metabolism, and no support was obtained for the hypothesis that dietary supplementation with Fe and citrate can lead to excessive Fe absorption and deposition in the tissues.  相似文献   

16.
17.
According to our previous results the gastropod Lymnaea stagnalis exposed to MC-producing cyanobacteria accumulates microcystins (MCs) both as free and covalently bound forms in its tissues, therefore representing a potential risk of MC transfer through the food web. This study demonstrates in a laboratory experiment the transfer of free and bound MCs from L. stagnalis intoxicated by MC-producing Planktothrix agardhii ingestion to the fish Gasterosteus aculeatus. Fish were fed during five days with digestive glands of L. stagnalis containing various concentrations of free and bound MCs, then with toxin-free digestive glands during a 5-day depuration period. MC accumulation was measured in gastropod digestive gland and in various fish organs (liver, muscle, kidney, and gills). The impact on fish was evaluated through detoxification enzyme (glutathion-S-transferase, glutathion peroxydase and superoxyde dismutase) activities, hepatic histopathology, and modifications in gill ventilation, feeding and locomotion. G. aculeatus ingestion rate was similar with intoxicated and toxin-free diet. Fish accumulated MCs (up to 3.96 ± 0.14 μg g−1 DW) in all organs and in decreasing order in liver, muscle, kidney and gills. Hepatic histopathology was moderate. Glutathion peroxydase was activated in gills during intoxication suggesting a slight reactive oxygen species production, but without any impact on gill ventilation. Intoxication via ingestion of MC-intoxicated snails impacted fish locomotion. Intoxicated fish remained significantly less mobile than controls during the intoxication period possibly due to a lower health condition, whereas they showed a greater mobility during the depuration period that might be related to an acute foraging for food. During depuration, MC elimination was total in gills and kidney, but partial in liver and muscle. Our results assess the MC transfer from gastropods to fish and the potential risk induced by bound MCs in the food web.  相似文献   

18.
Organ heavy metal levels, and ultrastructural localization were examined in the marine prosobranch mollusc Littorina saxatilis from a metal-contaminated site. Copper and zinc are localized in the digestive gland, stomach and kidney. The digestive gland does not appear to be a significant site of iron accumulation. High levels of copper and zinc in the stomach may indicate significant uptake from the food. Relatively high heavy metal levels in several organs were reflected in the presence of a variety of metal-containing aggregates (granules) within the tissues. In common with other invertebrates two broad classes of granule were present. The first appears to be proteinaceous, with a high sulphur content. This type contained copper and iron and was found in the stomach, kidney, pore cells, and rectum. The second type was inorganic and mineralized, containing phosphorus. They contained calcium, zinc and manganese, and were observed in the kidney and digestive gland. Differences in the number of metals were observed between the various granule types, possibly reflecting specific pathways involved in metal sequestration.  相似文献   

19.
Summary Previous workers have (a) compared pulmonate crop juice and digestive gland extracts and found a close similarity in the enzymic complements from these two sources, and (b) located specific enzymes within the various cell types of the digestive gland. The digestive gland seems to be the major source of extracellular enzymes but what is not clear is which of the enzymes associated with particular intracellular structures are actively secreted into the crop juice. The present study has used polyacrylamide disc gel electrophoresis to investigate the digestive gland and crop juice esterases ofCepaea nemoralis andC. hortensis. It appears that only some of the digestive gland esterases are specifically secreted. The variation shown in crop juice esterases suggests three independent sources in the digestive gland. Less detailed studies ofHelix aspersa andArianta arbustorum also indicate multiple sources of extracellular esterases.  相似文献   

20.
The influence of different chelates applied in the soil primary on Al and secondary on Fe and Mn mobilization and their removal from solution was investigated. The work compared the efficiency of 10 mM tartaric acid and 3 mM EDTA in soil washing process and accumulation potential of Pistia stratiotes in rhizofiltration process. The plant response on the toxic element Al and other elements Fe and Mn was determined through the nitrogen and free amino acids content in plants. The efficiency of chelates decreased in order 10 mM tartaric acid > deionized water > 3 mM EDTA for all studied elements. P. stratiotes was able to remove up to 90% of elements during the 15 days period. Higher content of toxic element Al and potential toxic elements Fe and Mn were observed in the roots than in the leaves with the increased time. The trend of Al accumulation correlated with Fe accumulation (R2=0.89). Toxicity impact of high level of Al was observed by increased free amino acids (AA) level. Proline, histidine, glutamic acid and glycine were the most synthesised free AA in leaves. Total AA content in leaves was significantly higher under chelates addition compared to control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号