首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new sinapic acid ester has been isolated and characterized as 1(E),2(E)-di-O-sinapoyl-β-d-glucopyranoside from cotyledons of dark-grown red radish (Raphanus sativus) seedlings. Its structure was elucidated by negative ion fast atom bombardment mass spectrometry, 1H and 13C NMR spectra and enzymatic determination of the glucose moiety. A possible biosynthetic mechanism for the formation of this new ester is discussed in which the energy-rich acyl glucoside 1-O-sinapoyl-β-d-glucose acts as the acyl donor in a sinapoyl transfer to the hydroxyl group at C-2 of the glucose moiety of another molecule of 1-O-sinapoyl-β-d-glucose (‘disproportionation’).  相似文献   

2.
After partial, acid hydrolysis of the extracellular, acid polysaccharide from Rh. trifolii Bart A, the following products were isolated and characterized: 3,4-O-(1-carboxyethylidene)-d-galactose, 4,6-O-(1-carboxyethylidene)-d-galactose, 3-O-[3,4-O-(1-carboxyethylidene)-β-d)-galactopyranosyl]-d-glucose, 3-O-[4,6-O-(1-carboxyethylidene)-β-d-galactopyranosyl]-d-glucose, O-[3,4-O-(1-carboxyethylidene)-β-d-galactopyranosyl ]-(1→3)-O-d-glucopyranosyl-(1→4)-d-glucose, and O-[4,6-O-(1- carboxyethylidene)-β-d-galactopyranosyl]-(1→3)-O-β-d-glucopyranosyl-(1→4)-d-glucose. The presence of pyruvic acid linked either to O-3 and O-4 or to O-4 and O-6 of the d-galactopyranosyl group of these saccharides indicates that both structures may be present in the original polysaccharide.  相似文献   

3.
Two hydrolysable tannins were isolated from green tea, and their structures were characterized by chemical and spectral means as 1,4,6-tri-O -galloyl-β-d-glucose and 1-O-galloyl-4,6-(?)-hexahydroxydiphenoyl-β-d-glucose. In addition, a new proanthocyanidin gallate was isolated, together with the known procyanidins B-2, B-4 and C-1. The structure of the proanthocyanidin was established as epigallocatechin-(4β → 8)-3-O-galloylepicatechin.  相似文献   

4.
Partial, acid hydrolysis of the extracellular polysaccharide from Xanthomonas campestris gave products that were identified as cellobiose, 2-O-(β-d-glucopyranosyluronic acid)-d-mannose, O(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-d-glucose, O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)]-d-glucose, and O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-glucose. This and other evidence supports the following polysaccharide structure (1) which has been proposed independently by Jansson, Kenne, and Lindberg:
  相似文献   

5.
We performed first-principles calculations based on the ab initio fragment molecular orbital method on dengue virus envelope protein with a hydrophobic ligand, octyl-β-d-glucose to develop an entry inhibitor. As several polar amino acid residues are present at the edge of the pocket, the glucose moiety was chemically modified with hydrophilic groups. Introduction of both sulfated and carboxylated groups on glucose enhanced not only binding affinity to the protein but also inhibition of dengue virus entry. Octyl-2-O-sulfo β-d-glucuronic acid may serve as a molecular probe to study the dengue virus entry process.  相似文献   

6.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

7.
The structure of the capsular polysaccharide (S-XIX) of Pneumococcus Type XIX, which contains residues of d-glucose, l-rhamnose, 2-acetamido-2-deoxy- d-mannose, and phosphate, has been investigated by acid hydrolysis, treatment with acid phosphatase, mass spectrometry, and 13C-n.m.r. spectroscopy. Phosphoric esters in S-XIX were largely resistant to hydrolysis (4M HCl, 100°, 3 h). With M or 2M HCl at 100° for 3 h, 4-O-(2-amino-2-deoxy-β-d-mannopyranosyl)-d-glucose 4′-phosphate was liberated. More-drastic hydrolysis of S-XIX gave 2-amino-2-deoxy-d-mannose 3-, 4-, and 6-phosphates, and 4-O-(2-amino-2-deoxy-d-mannopyranosyl)-d-glucose and its 4′-phosphate.  相似文献   

8.
Syntheses are reported of 4-deoxy-d-xylo-hexose and 4-azido-4-deoxy-d-glucose as potential inhibitors for lactose synthase [uridine 5′-(α-d-galactopyranosyl pyrophosphate):d-glucose 4-β-d-galactopyranosyltransferase, EC 2.4.1.22]. These syntheses involved SN2 displacement of the 4-methylsulfonyloxy group of methyl 2,3,6-tri-O-benzoyl-4-O-methylsulfonyl-α-d-galactopyranoside by iodide and azide ions. In both cases, inversion in configuration was observed. The resulting intermediates, methyl 2,3,6-tri-O-benzoyl-deoxy-4-iodo-α-d-glucopyranoside and methyl 4-azido-2,3,6-tri-O-benzoyl-deoxy-α-d-glucopyranoside, were obtained in crystalline form. Both 4-deoxy-d-xylo-hexose and 4-azido-4-deoxy-d-glucose were found to be inhibitors for lactose synthase in the presence of α-lactalbumin, but had no effect in the absence of α-lactalbumin. Both d-glucose analogues bind to the enzyme system far more weakly than d-glucose, suggesting that the recognition of the 4-OH group of the acceptor substrate is an important factor in binding.  相似文献   

9.
When treated with a large excess of 2,2-dimethoxypropane or 2,2-dibenzyloxypropane in 1,4-dioxane solution in the presence of p-toluenesulfonic acid,2-acetamido-2-deoxy-d-glucose and 2-(benzyloxycarbonylamino)-2-deoxy-d-glucose yield the corresponding 3,4:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl or dibenzyl acetal in good yield.  相似文献   

10.
Two new acylated triterpenoid saponins named pendulaosides A and B as well as the known phenolic compounds methyl gallate, gallic acid, 1,2,3,6-tera-O-galloyl-β-d-glucose and 1,2,3,4,6-penta-O-galloyl-β-d-glucose, were isolated from the seeds of Harpullia pendula. The structures of pendulaosides A and B were determined using extensive 1D and 2D NMR analysis and mass spectrometry as well as acid hydrolysis, as 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and 3-O-β-d-glucopyranosyl-(1→2)-[α-L-arabinofuranosyl-(1→3)]-β-d-glucuronopyranosyl-16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene, respectively. To the best of our knowledge the two triterpene parts 22-O-angeloyl-3β,16α,22α,24β,28-pentahydroxylolean-12-ene and16-O-(2-methylbutyroyl)-3β,16α,22α,24β,28-pentahydroxylolean-12-ene have never been characterized before. The two isolated saponins were assayed for their in-vitro cytotoxic activity against the three human tumor cell lines HepG2, MCF7 and PC3. The results showed that pendulaoside A exhibited moderate activity on PC3 cell line with IC50value equal to 13.0 μM and weak activity on HepG2 cell line with IC50 value equal to 41.0 μM. Pendulaoside B proved to be inactive against the three used cell lines.  相似文献   

11.
The stereoselective glycosylation of a model alcohol (cyclohexanol) by derivatives of 2-azido-2-deoxy-d-galactopyranose was studied under various conditions. 2-Azido-3,4,6-tri-O-benzyl-2-deoxy-β-d-galactopyranosyl chloride (9) was found to be the most efficient glycosylating agent for the synthesis of oligosaccharides containing 2-acetamido-2-deoxy-α-d-galactopyranose residues, and gave a tetrasaccharide, which is a determinant of the blood-group A (Type 1), i.e., O-α-l-fucopyranosyl-(1→2)-[O-2-acetamido-2-deoxy-α-d- galactopyranosyl-(1→3)]-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose, and its trisaccharide fragment, O-2-acetamido-2-deoxy-α-d-galactopyranosyl-(1→3)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose. In the course of this synthesis, the determinant trisaccharide related to the H blood-group, i.e., O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2- deoxy-d-glucose, was also obtained.  相似文献   

12.
Zhang J  Zhao M  Peng S 《Carbohydrate research》2011,346(13):1997-2003
A convenient synthesis of 2-amino-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucopyranoside was described from the readily available starting material 2-acetamido-2-deoxy-d-glucose (N-acetyl-d-glucosamine). Herein, the coupling of different lipophilic amino acids with 2-amino-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucose was reported via an amide linkage as useful building blocks for the synthesis of glycopeptides. Of particular interest, bioactive peptide Arg-Gly-Asp (RGD) was incorporated into the building block containing valine was also reported. The 15 examples of corresponding di-, tri- and tetra-peptides were obtained as single αanomers.  相似文献   

13.
Methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-β-d-glucofuranoside (11) was obtained in six steps from the known methyl 3-O-allyl-2-benzamido-2-deoxy-5,6-O-isopropylidene-β-d-glucofuranoside. Mild acid hydrolysis, followed by benzylation gave the 5,6-dibenzyl ether. The benzamido group was exchanged for an acetamido group by strong alkaline hydrolysis, followed by N-acetylation, and the allyl group was isomerized into a 1-propenyl group that was hydrolyzed with mercuric chloride. Treatment of 11 with l-α-chloropropionic acid and with diazomethabe gave methyl 2-acetamido-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-β-d-glucofuranoside which formed on mercaptolysis the internal ester 16, further converted into 2-acetamido-4-O-acetyl-5,6-di-O-benzyl-2-deoxy-3-O-[d-1-(methoxycarbonyl)ethyl]-d-glucose diethyl dithioacetal (18) by alkaline treatment followed by esterification with diazomethane and acetylation. Attempts to remove the O-acetyl group of the corresponding dimethyl acetal 20 with sodium methoxide in mild conditions were not successful.  相似文献   

14.
Leaves of Coleus, Pilea, Cistus and Cestrum, and ripe tomatoes were all able to convert trans-cinnamic acid-[3-14C]into glucose esters of cinnamic acids. The pool sizes of these esters were measured by the radioisotopic dilution method, and they were found to be of the order of a few μg/g fresh plant material. 1-O-Caffeoyl-β-d-glucose in Cestrum leaves amounted to 70μg/g fresh plant material. Enzyme extracts from Cestrum leaves were able to convert trans-p-coumaric acid-[3-14C] to 1-O-p-coumaroyl-β-d- glucose, using UDPG as a source of glucose. This enzyme activity could be measured only by trapping techniques, due to the presence of considerable hydrolase activity in crude enzyme extracts.  相似文献   

15.
The repeating disaccharide-dipeptide units of the bacterial, cell-wall peptidoglycan, one being O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→4)-2-acetamido-2-deoxy-d-glucose, and the other, O-(2-acetamido-2-deoxy-β-d-glucosyl)-(1→4)-N-acetyl-muramoyl-l-alanyl-d-isoglutamine, have been synthesized. Some carbohydrate analogs, such as O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)- (1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, O-β-d-glucosyl-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, and O-(6-acetamido-6-deoxy-β-d-glucosyl)-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, were also synthesized. Their immunoadjuvant activities were examined in guinea-pigs.  相似文献   

16.
A facile and efficient way for the synthesis of cholestane and furostan saponin analogues was established and adopted for the first time. Following this strategy, starting from diosgenin, three novel cholestane saponin analogues: (22S,25R)-3β,22,26-trihydroxy-cholest-5-ene-16-one 22-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 11, (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 14 and (25R)-3β,16β,26-trihydroxy-cholest-5-ene-22-one 16-O-[O-α-l-rhamnopyranosyl-(1  2)-β-d-glucopyranoside] 17, three novel furostan saponin analogues: (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 23, (22R,25R)-furost-5-ene-3β,22,26-triol 22-O-(α-d-glucopyranoside) 24 and (22S,25R)-furost-5-ene-3β,22,26-triol 22-O-[O-α-l-rhamnopyranosyl-(1  2)-α-d-glucopyranoside] 26, were synthesized ultimately. The structures of all the synthesized analogues were confirmed by spectroscopic methods. The S-chirality at C-22 of cholestane was confirmed by Mosher's method. The absolute configuration at C-22 of furostan saponin analogues was distinguished by conformational analysis combined with the NMR spectroscopy. The cytotoxicities of the synthetic analogues toward four types of tumor cells were shown also.  相似文献   

17.
The products of hydrazinolysis of the 1-N-acetyl and 1-N-(l-β-aspartyl) derivatives of 2-acetamido-2-deoxy-β-d-glucopyranosylamine could not be converted quantitatively into 2-amino-2-deoxy-d-glucose under mild conditions. Proton and 13C-n.m.r. measurements indicated that the hydrazone of 2-amino-2-deoxy-d-glucose was a major product of the hydrazinolysis of 2-acetamido-1-N-acetyl-2-deoxy-β-d-glucopyranosylamine. Control experiments showed that acetohydrazide is slowly converted into 4-amino-3,5-dimethyl-1,2,4-triazole under-the conditions of hydrazinolysis, and that 2-amino-2-deoxy-d-glucose reacts slowly with acetohydrazide in dilute acetic acid. The implications of these results in relation to the hydrazinolysis of glycopeptides and glycoproteins are discussed.  相似文献   

18.
19.
《Carbohydrate research》1985,140(1):51-59
The reaction of benzyl 2-benzamido-4,6-O-benzylidene-2-deoxy-3-O-tosyl-α-d-glucopyranoside or benzyl 4,6-O-benzylidene-2,3-benzoylepimino-2,3-dideoxy-α-d-allopyranoside with anhydrous tetrabutylammonium fluoride in hexamethylphosphoric triamide gave ∼40% of benzyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-α-d-altropyranoside (6a). Transformation of 6a into benzyl 3-benzamido-2,3,6-trideoxy-2-fluoro-α-d-arabino-hex-5-enopyranoside (13a) was carried out by well-established methodology. Hydrogenation of the double bond in 13a furnished the title compound in good yield. Methyl 3-benzamido-2,3,6-trideoxy-2-fluoro-β-l-galactopyranoside was also prepared in nine steps from 2-amino-2-deoxy-d-glucose.  相似文献   

20.
Astragalin (kaempferol-3-O-β-d-glucopyranoside, Ast) glucosides were synthesized by the acceptor reaction of a dextransucrase produced by Leuconostoc mesenteroides B-512FMCM with astragalin and sucrose. Each glucoside was purified and their structures were assigned as kaempferol-3-O-β-d-glucopyranosyl-(1 → 3)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-nigeroside, Ast-G1′) and kaempferol-3-O-β-d-glucopyranosyl-(1 → 6)-O-α-d-glucopyranoside (or kaempferol-3-O-β-d-isomaltoside, Ast-G1) for one glucose transferred, and kaempferol-3-O-β-d-isomaltooligosacharide (Ast-IMO or Ast-Gn; n = 2-8). The astragalin glucosides exhibited 8.3-60.6% higher inhibitory effects on matrix metalloproteinase-1 expression, 18.8-20.3% increased antioxidant effects, and 3.8-18.8% increased inhibition activity of melanin synthesis compared to control (without the addition of compound), depending on the number of glucosyl residues linked to astragalin. These novel compounds could be used to further expand the industrial applications of astragalin glucosides, in particular in the cosmetics industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号