首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of endothelial sprouts from capillary walls in human granulation tissue has been examined by two- and three-dimensional electron microscopy using a serial sectioning method. Within the parent capillary wall endothelial sprouts composed of two layers of relatively immature endothelium was demonstrated. Three-dimensional reconstruction revealed that the two layered endothelial projections extended and/or migrated outward in a bicellular configuration, the slit-like lumen of the endothelial sprout connecting with the parent capillary lumen. These ultrastructural appearances have not been reported previously with sequential composition to the morphological progression of the sprout. In the cytoplasm of the endothelial sprout, abundant intermediate filaments were assumed to play a mechanical role, tension resistance, in the development of the endothelial sprout. The active endothelial sprout in granulation tissue was considered to be at least partially responsible for the growth of the capillary network and subsequent development of granulation tissue.  相似文献   

2.
The present study was designed to examine therapeutic efficacy of the root extract of Stephania Tetrandra S. Moore (STMS) (traditional Chinese medicine; Han Fang Ji) for treatment of neovascularization of the retinal capillary (retinopathy) in streptozotocin (STZ)-induced diabetic rats (STZ diabetic rats) in culture. Recently we have established the culture system in which fetal bovine serum (FBS) in Dulbecco modified Eagle medium (DMEM) induced neovascularization of the retinal capillary and choroidal capillary in normal rats in culture. STZ diabetic rats showed more neovascularization of the retinal capillary and choroidal capillary than did normal rats in culture. In this study, the retinal tissue was removed for the posterior ocular region and cultured in DMEM containing FBS. The choroidal tissue of the posterior ocular region was also removed and cultured as an internal reference. Administration of STSM (0.91, 9.1 and 91 microg/ml) significantly suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary; administration of STSM suppressed neovascularization of the choroidal capillary in both STZ diabetic rats and normal rats. In order to determine the component of STSM inhibiting neovascularization of the retinal capillary, tetrandrine (a major chemical constituent of STSM) was administered and neovascularization of the retinal capillary was examined in culture. The effect of tetrandrine on the choroidal capillary was also examined as an internal reference. Administration of tetrandrine (0.1, 1.0 and 10 microM) suppressed neovascularization of the retinal capillary in both STZ diabetic rats and normal rats in a dose-dependent manner. Similar results were obtained with the choroidal capillary of both STZ diabetic rats and normal rats. We infer, therefore, that STSM has a direct effect on the retinal capillary of posterior ocular region and suppresses neovascularization of retinal capillary in STZ diabetic rats through the activation of tetrandrine. These results suggest that STSM may prevent for delay the progression of retinopathy in diabetic patients.  相似文献   

3.
To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance.  相似文献   

4.
The effects of the circulation rate in capillaries, the intensity of O2 consumption by nerve cells and the capillary network density on the O2 tension distribution in the cerebral cortex have been studied, utilizing a mathematical model simulating actual neuron-capillary relationships. The model has been written as a system of equations in partial derivatives, its solution obtained by the net-point method. Regulatory variations of the capillary circulation rate in certain cerebral microregions have been shown to ensure similar changes in oxygen supply throughout the region. A drop of the pO2 level in a cerebral microregion with a rising O2 consumption by nerve cells is shown to be due, by 75 percent, to the increase of O2 consumption and by 25 percent, to the lower pO2 in the capillaries. Conversely, an increase in pO2 in microregions resulting from a lower O2 consumption by neurons is due by 75 percent, to a pO2 rise in capillaries and by 25 percent, at the expense of an O2 consumption decrease. In cerebral regions differing in capillary network density by 20 percent, changes in the conditions for oxygen supply to tissue are due by 1/3 to pO2 variations in the capillaries and by 2/3 to alterations in the diffusion distances.  相似文献   

5.
The kidney has several characteristics which make renal pressures and fluid dynamics unique when compared to other organs. Renal blood flow is roughly 100 times that of skeletal muscle. The renal circulation consists of two distinct capillary beds in series: a high pressure system in the glomerulus that favors filtration and a low pressure system in the peritubule network that favors reabsorption. The hydrostatic pressure in the glomerular capillary is 4-6 times higher than the hydrostatic pressure in the peritubule capillary so that approximately 25% of the plasma is filtered. The bulk of the filtrate is subsequently reabsorbed by the peritubule capillary network. Micropuncture techniques have been used to obtain quantitative measurements of the pressures and fluid dynamics of the peritubule microcirculation. The net force for uptake of all the fluid reabsorbed by a single proximal tubule up to the point of micropuncture is 21 mm Hg acting over a capillary bed with a permeability surface area product of 2 nl/min per mm Hg. In contrast to subcutaneous tissue and muscle, the renal interstitial fluid pressure is positive. The consequence of a positive interstitial fluid pressure is that normal lymph flow is relatively high and changes in interstitial fluid pressure have relatively little effects on lymph flow.  相似文献   

6.
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.  相似文献   

7.
This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The need for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography.  相似文献   

8.
 An approach is presented for modeling transport and exchange in skeletal muscle that can be used to analyze vascular beds consisting of a large number of interacting capillaries. First the oxygen concentration is determined in a functional unit consisting of a single capillary surrounded by a region of tissue in which a flux is prescribed on the outer boundary of the region. This flux, which is a result of the interaction among all of the capillaries comprising the vascular bed, is then found by matching the concentration along the borders between adjacent units. This leads to a system of ordinary differential equations for the oxygen concentration in the capillaries coupled with a system of algebraic equations for the fluxes. The method is illustrated by obtaining the oxygen concentration within an array of capillaries for the case when each capillary has a different initial concentration and for the case when each capillary has a different flow rate. Received: 12 June 2001 / Revised version: 18 April 2002 / Published online: 17 January 2003 Key words or phrases: Skeletal muscle – Transport – Microcirculation  相似文献   

9.
Capillary shear stress can improve osteogenic differentiation in muscle-derived precursor cells (MDPCs). This has implications for large-scale bioprocessing of cell therapies where capillary transfer is needed. The recovery, viability, and osteogenic differentiation potential of two subsets of MDPCs, early-adherent pre-plate 1 (PP1) and late-adherent PP3 populations, have been examined: PP1 MDPCs produced a greater degree of osteogenic differentiation than PP3 MDPCs, quantified by Alizarin Red S staining intensity (P < 0.05). For both cell populations, capillary flow-induced significant increases in Alizarin Red S staining (P < 0.05). However, PP1 cells were more susceptible to capillary flow-induced damage than PP3 cells and this was dependent on duration of exposure. Overall, results indicate that different cell subsets, even from within a single tissue, can respond variably to capillary shear stress, necessitating its precise monitoring and control.  相似文献   

10.
Electron Microscopy of the Tapetum Lucidum of the Cat   总被引:4,自引:4,他引:0       下载免费PDF全文
The fine structure of the tapetum of the cat eye has been investigated by electron microscopy. The tapetum is made up of modified choroidal cells, seen as polygonal plates grouped around penetrating blood vessels which terminate in the anastomosing capillary network of the choriocapillaris. The tapetal cells are rectangular in cross-section, set in regular brick-like rows, and attain a depth of some thirty-five cell layers in the central region. This number is gradually reduced peripherally, and is replaced at the margin of the tapetum by normal choroidal tissue. The individual cells are packed with long slender rods 0.1 µ by 4 to 5 µ. The rods are packed in groups and with their long axes oriented roughly parallel to the plane of the retinal surface. Each cell contains several such groups. Cells at the periphery or in the outer layers of the tapetum are frequently seen to contain both tapetal rods and melanin granules, the latter typical of the choroidal melanocytes. Also melanocyte granules may have intermediate shapes. These observations plus the similar density of the two inclusions lead to the belief that the tapetal rods may be melanin derivatives. A fibrous connective tissue layer lies between the tapetum and the retina. The subretinal capillary network, the choriocapillaris, rests on this layer and is covered by the basement membrane of the retinal epithelium. The cytoplasm of the retinal epithelium exhibits marked absorptive modifications where it comes in contact with the vessels of the choriocapillaris. This fibrous layer and the basement membrane of the retinal epithelium apparently comprise the structural elements of Bruch's membrane.  相似文献   

11.
The fine structure of the tapetum of the cat eye has been investigated by electron microscopy. The tapetum is made up of modified choroidal cells, seen as polygonal plates grouped around penetrating blood vessels which terminate in the anastomosing capillary network of the choriocapillaris. The tapetal cells are rectangular in cross-section, set in regular brick-like rows, and attain a depth of some thirty-five cell layers in the central region. This number is gradually reduced peripherally, and is replaced at the margin of the tapetum by normal choroidal tissue. The individual cells are packed with long slender rods 0.1 micro by 4 to 5 micro. The rods are packed in groups and with their long axes oriented roughly parallel to the plane of the retinal surface. Each cell contains several such groups. Cells at the periphery or in the outer layers of the tapetum are frequently seen to contain both tapetal rods and melanin granules, the latter typical of the choroidal melanocytes. Also melanocyte granules may have intermediate shapes. These observations plus the similar density of the two inclusions lead to the belief that the tapetal rods may be melanin derivatives. A fibrous connective tissue layer lies between the tapetum and the retina. The subretinal capillary network, the choriocapillaris, rests on this layer and is covered by the basement membrane of the retinal epithelium. The cytoplasm of the retinal epithelium exhibits marked absorptive modifications where it comes in contact with the vessels of the choriocapillaris. This fibrous layer and the basement membrane of the retinal epithelium apparently comprise the structural elements of Bruch's membrane.  相似文献   

12.
Methyl methacrylate vascular corrosion replicas were used to examine the macrocirculation in the head region and the microcirculation of respiratory vessels in the air-breathing swamp eel Monopterus cuchia. Fixed respiratory tissue was also examined by SEM to verify capillary orientation. The respiratory and systemic circulations are only partially separated, presumably resulting in supply of mixed oxygenated and venous blood to the tissues. A long ventral aorta gives rise directly to the coronary and hypobranchial arteries. Two large shunt vessels connect the ventral aorta to the dorsal aorta, whereas the remaining ventral aortic flow goes to the respiratory islets and gills. Only two pairs of vestigial gill arches remain, equivalent to the second and third arches, yet five pairs of aortic arches were identified. Most aortic arches supply the respiratory islets. Respiratory islet capillaries are tightly coiled spirals with only a fraction of their total length in contact with the respiratory epithelium. Valve-like endothelial cells delimit the capillary spirals and are unlike endothelial cells in other vertebrates. The gills are highly modified in that the lamellae are reduced to a single-channel capillary with a characteristic three-dimensional zig-zag pathway. There are no arterio-arterial lamellar shunts, although the afferent branchial artery supplying the gill arches also supplies respiratory islets distally. A modified interlamellar filamental vasculature is present in gill tissue but absent or greatly reduced in the respiratory islets. The macro- and micro-circulatory systems of M. cuchia have been considerably modified presumably to accommodate aerial respiration. Some of these modifications involve retention of primitive vessel types, whereas others, especially in the microcirculation, incorporate new architectural designs some of whose functions are not readily apparent.  相似文献   

13.
M Raschke 《Acta anatomica》1990,137(2):175-179
The blood vessels of the antrum area of human gastric tunica mucosa have been studied by scanning electron microscopy and compared with vertical and horizontal serial sections of perfusion-fixed antrum mucosa. In contrast to previous studies on the oxyntic corpus mucosa, where two superimposed capillary layers could be seen, the antrum mucosa presents only one capillary layer. It extends from the lymphatic follicles above the lamina muscularis mucosae up to the luminal surface. No further arterioles exist in the glandular part of the antrum mucosa. The luminal aspect of the capillaries show thin, honeycomb-like capillaries, differing from our previous findings in the corpus area. There the capillaries are wide and circulate in a dense, convoluted way. Arteriovenous anastomoses again could not be seen in the examined tissue. The differences in gastric microangioarchitecture might be explained by the extent of the glandular part in both regions. The findings in the antrum area very much resemble the basal capillary layer in the corpus mucosa. The critical height for one capillary layer in the glandular tissue of human gastric mucosa is estimated to be approximately 1 mm. Larger diameters, as in the oxyntic corpus mucosa, might require a second capillary layer.  相似文献   

14.
cis-Epoxyeicosatrienoic acids (EETs) and their hydrolysis products (threo-DHETs) have been proposed to be endothelial-dependent hyperpolarizing factors (EDHFs) which upregulate blood flow when tissue perfusion is impaired. Various EET regioisomers and enantiomers are formed from arachidonate by inducible cytochrome P450 epoxygenase isoforms, and tissue EET profiles may vary with diet, time, and disease. Because EET actions and metabolism may be regio- and stereospecific, convenient methods to measure profiles of EET isomers in tissues are needed. In the current studies, we describe two simple capillary electrophoretic methods for resolving EETs. The first method involves capillary electrophoresis with a mixture of neutral and anionic beta-cyclodextrins, which in one step baseline-resolves underivatized EET regioisomers and their enantiomers. Low picogram amounts of EET enantiomers were identified based on migration times and UV spectra. The method was also used to assess the antipode purity of EET standards, and to determine murine hepatic levels of EET enantiomers. The second method involves capillary electrochromatography, which also baseline-resolves underivatized EET and DHET regioisomers in one step. We conclude that in EET assays the major advantages of capillary electrophoresis over reversed-phase HPLC are improved peak efficiency, sensitivity, and resolution, plus precise coelution of deuterated and nondeuterated EETs.  相似文献   

15.
16.
A random walk model of capillary tracer transit times is developed that treats simulataneously: plug flow in the capillary, radial and axial diffusion in the capillary cylinder and tissue annulus, and endothelial barriers to solute transport. The mean transit time is simply the volume of distribution divided by blood flow. Variance of transit times has additive terms for radial, axial, and barrier influences that are reduceable to variances of simpler models of capillary exchange. The dependence of variance on the solute diffusion coefficient is not monotonic, but has a minimum near 0·5 × 10?6 cm2/s for reasonable parameters and no barrier, Small molecules like inert gases are expected to have larger variances with higher diffusion coefficients, while larger molecules and barrier limited solutes will have the reverse dependence. Available literature data indicates that capillary heterogeneity will have a major influence on whole-body variance of transit times.  相似文献   

17.
The auricular and ventricular microcirculatory bed has been studied in persons of mature age, not suffering from any cardio-vascular diseases during their life. As a whole, 48 objects have been studied. The microcirculatory bed has been revealed in sections of the cardiac wall 70-100 mcm thick using silver nitrate impregnation after V. V. Kuprianov. Organ- and tissue-specific properties of the vascular microcirculatory bed are revealed in interrelations of the vessels and the structural elements of the cardiac wall (myocardium, and connective tissue structures), in position of nuclei of the endothelial cells of the capillary wall and in places of the capillary branchings. Principle differences in structure of the auricular and ventricular microcirculatory bed are demonstrated. The notion the organ- and tissue-specific properties of the microcirculatory bed vessels is discussed.  相似文献   

18.
The ability to characterise capillary supply plays a key role in developing effective therapeutic interventions for numerous pathological conditions, such as capillary loss in skeletal or cardiac muscle. However, quantifying capillary supply is fraught with difficulties. Averaged measures such as capillary density or mean inter-capillary distance cannot account for the local geometry of the underlying capillary distribution, and thus can only highlight a tissue wide, global hypoxia. Detailed tissue geometry, such as muscle fibre size, has been incorporated into indices of capillary supply by considering the distribution of Voronoi tessellations generated from capillary locations in a plane perpendicular to muscle fibre orientation, implicitly assuming that each Voronoi polygon represents the area of supply of its enclosed capillary. Using a modelling framework to assess the capillary supply capacity under maximal sustainable conditions in muscle, we theoretically demonstrate that Voronoi tessellations often provide an accurate representation of the regions supplied by each capillary. However, we highlight that this use of Voronoi tessellations is inappropriate and inaccurate in the presence of extensive capillary rarefaction and pathological variations in oxygen tension of different capillaries. In such cases, oxygen flux trapping regions are developed to provide a more general representation of the capillary supply regions, in particular incorporating the additional influences of heterogeneity that are absent in the consideration of Voronoi tessellations.  相似文献   

19.
A theoretical investigation of capillary-tissue fluid exchange has been studied including the characteristics and influence of the boundaries and media through which the fluid flows. Filtration from a cylindrical capillary into the concentrically surrounding tissue space and flow from a capillary into the tissue across a thin membrane are analyzed in detail. In has been observed that the filtration efficiency of the functional unit decreases as the viscosity of the peripheral layer increases. Contrary to the results of Apelblat [17], the slip velocity at the porous boundary plays a dominant role in filtration efficiency. It has also been noticed that the filtration efficiency decreases as the slip velocity at the porous boundary increases.  相似文献   

20.
Vascular tissue engineering has been considered promising as one of the alternatives for viable artificial tissues and organs. Macro- and microscale hollow tubes fabricated with various techniques have been widely studied to mimic blood vessels. To date, the fabrication of biomimetic capillary vessels with sizes ranging from 1 to 10 µm is still challenging. In this paper, core-sheath microtubes were electrospun to mimic capillary vessels and were embedded in carboxymethyl cellulose/sodium alginate hydrogel for bioprinting. The results showed improved printing fidelity and promoted cell attachment. The tube concentration and tube length both had significant influences on filament size and merging area. Printed groups with higher microtube concentration showed higher microtube density, with filament/nozzle size ratio, and printed/designed grid area ratio closer to 100%. In the in vitro experiments, microtubes were not only compatible with human umbilical vein endothelial cells but also provided microtopographical cues to promote cell proliferation and morphogenesis in three-dimensional space. In summary, the microtubes fabricated by our groups have the potential for the bioprinting of vascularized soft tissue scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号