首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gene conversion - apparently non-reciprocal transfer of sequence information between homologous DNA sequences - has been reported in various organisms. Frequent association of gene conversion with reciprocal exchange (crossing-over) of the flanking sequences in meiosis has formed the basis of the current view that gene conversion reflects events at the site of interaction during homologous recombination. In order to analyze mechanisms of gene conversion and homologous recombination in an Escherichia coli strain with an active RecF pathway (recBC sbcBC), we first established in cells of this strain a plasmid carrying two mutant neo genes, each deleted for a different gene segment, in inverted orientation. We then selected kanamycin-resistant plasmids that had reconstituted an intact neo + gene by homologous recombination. We found that all the neo + plasmids from these clones belonged to the gene-conversion type in the sense that they carried one neo + gene and retained one of the mutant neo genes. This apparent gene conversion was, however, only very rarely accompanied by apparent crossing-over of the flanking sequences. This is in contrast to the case in a rec + strain. or in a strain with an active RecE pathway (recBC sbcA). Our further analyses, especially comparisons with apparent gene conversion in the rec + strain, led us to propose a mechanism for this biased gene conversion. This successive half crossing-over model proposes that the elementary recombinational process is half crossing;-over in the sense that it generates only one recombinant DNA duplex molecule, and leaves one or two free end(s), out of two parental DNA duplexes. The resulting free end is, the model assumes, recombinogenic and frequently engages in a second round of half crossing-over with the recombinant duplex. The products resulting from such interaction involving two molecules of the plasmid would be classified as belonging to the gene-conversion type without crossing-over. We constructed a dimeric molecule that mimics the intermediate form hypothesized in this model and introduced it into cells. Biased gene conversion products were obtained in this reconstruction experiment. The half crossing-over mechanism can also explain formation of huge linear multimers of bacterial plasmids, the nature of transcribable recombination products in bacterial conjugation, chromosomal gene conversion not accompanied by flanking exchange (like that in yeast mating-type switching), and antigenic variation in microorganisms.  相似文献   

2.
In mammalian cells, chromosomal double-strand breaks are efficiently repaired, yet little is known about the relative contributions of homologous recombination and illegitimate recombination in the repair process. In this study, we used a loss-of-function assay to assess the repair of double-strand breaks by homologous and illegitimate recombination. We have used a hamster cell line engineered by gene targeting to contain a tandem duplication of the native adenine phosphoribosyltransferase (APRT) gene with an I-SceI recognition site in the otherwise wild-type APRT+ copy of the gene. Site-specific double-strand breaks were induced by intracellular expression of I-SceI, a rare-cutting endonuclease from the yeast Saccharomyces cerevisiae. I-SceI cleavage stimulated homologous recombination about 100-fold; however, illegitimate recombination was stimulated more than 1,000-fold. These results suggest that illegitimate recombination is an important competing pathway with homologous recombination for chromosomal double-strand break repair in mammalian cells.  相似文献   

3.
Homologous recombination is an important DNA repair mechanism in vegetative cells. During the repair of double-strand breaks, genetic information is transferred between the interacting DNA sequences (gene conversion). This event is often accompanied by a reciprocal exchange between the homologous molecules, resulting in crossing over. The repair of DNA damage by homologous recombination with repeated sequences dispersed throughout the genome might result in chromosomal aberrations or in the inactivation of genes. It is therefore important to understand how the suitable homologous partner for recombination is chosen. We have developed a system in the yeast Saccharomyces cerevisiae that can monitor the fate of a chromosomal double-strand break without the need to select for recombinants. The broken chromosome is efficiently repaired by recombination with one of two potential partners located elsewhere in the genome. One of the partners has homology to the broken ends of the chromosome, whereas the other is homologous to sequences distant from the break. Surprisingly, a large proportion of the repair is carried out by recombination involving the sequences distant from the broken ends. This repair is very efficient, despite the fact that it requires the processing of a large chromosomal region flanking the break. Our results imply that the homology search involves extensive regions of the broken chromosome and is not carried out exclusively by sequences adjacent to the double-strand break. We show that the mechanism that governs the choice of homologous partners is affected by the length and sequence divergence of the interacting partners, as well as by mutations in the mismatch repair genes. We present a model to explain how the suitable homologous partner is chosen during recombinational repair. The model provides a mechanism that may guard the integrity of the genome by preventing recombination between dispersed repeated sequences.  相似文献   

4.
DNA double-strand breaks can be repaired by homologous recombination involving the formation and resolution of Holliday junctions. In Escherichia coli, the RuvABC resolvasome and the RecG branch-migration enzyme have been proposed to act in alternative pathways for the resolution of Holliday junctions. Here, we have studied the requirements for RuvABC and RecG in DNA double-strand break repair after cleavage of the E. coli chromosome by the EcoKI restriction enzyme. We show an asymmetry in the ability of RuvABC and RecG to deal with joint molecules in vivo. We detect linear DNA products compatible with the cleavage-ligation of Holliday junctions by the RuvABC pathway but not by the RecG pathway. Nevertheless we show that the XerCD-mediated pathway of chromosome dimer resolution is required for survival regardless of whether the RuvABC or the RecG pathway is active, suggesting that crossing-over is a common outcome irrespective of the pathway utilised. This poses a problem. How can cells resolve joint molecules, such as Holliday junctions, to generate crossover products without cleavage-ligation? We suggest that the mechanism of bacterial DNA replication provides an answer to this question and that RecG can facilitate replication through Holliday junctions.  相似文献   

5.
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a “donor” tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.  相似文献   

6.
The mechanism by which double-strand DNA breaks are repaired in the radiation-resistant bacterium Deinococcus radiodurans is not well understood. This organism lacks the RecBCD helicase/nuclease, which processes broken DNA ends in other bacteria. The RecF pathway is an alternative pathway for recombination and DNA repair in E. coli, when RecBCD is absent due to mutation, and D. radiodurans may rely on enzymes of this pathway for double-strand break repair. The RecJ exonuclease is thought to process broken DNA ends for the RecF pathway. We attempted to delete the recJ gene from D. radiodurans, using homologous recombination to replace the gene with a streptomycin-resistance cassette. We were unable to obtain a complete deletion mutant, in which the gene is deleted from all of the chromosome copies in this polyploid organism. Quantitative real-time PCR shows that the heterozygous mutants have a recJ gene copy that is ca. 10–30% that of the wild-type. Mutants with reduced recJ gene copy grow slowly and are more sensitive than wild-type to UV irradiation, gamma irradiation, and hydrogen peroxide. The mutants are as resistant as wild-type to methyl-methanesulfonate. The D. radiodurans RecJ protein was expressed in E. coli and purified under denaturing conditions. The re-folded protein has nuclease activity on single-stranded DNA with specificity similar to that of E. coli RecJ exonuclease.  相似文献   

7.
Birmingham EC  Lee SA  McCulloch RD  Baker MD 《Genetics》2004,168(3):1539-1555
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (DSBR) model is currently accepted as a paradigm for acts of DSB repair that lead to crossing over. In this study, a well-defined mammalian gene-targeting assay was used to test predictions that the DSBR model makes about the frequency and position of hDNA in recombinants generated by crossing over. The DSBR model predicts that hDNA will frequently form on opposite sides of the DSB in the two homologous sequences undergoing recombination [half conversion (HC); 5:3, 5:3 segregation]. By examining the segregation patterns of poorly repairable small palindrome genetic markers, we show that this configuration of hDNA is rare. Instead, in a large number of recombinants, full conversion (FC) events in the direction of the unbroken chromosomal sequence (6:2 segregation) were observed on one side of the DSB. A conspicuous fraction of the unidirectional FC events was associated with normal 4:4 marker segregation on the other side of the DSB. In addition, a large number of recombinants displayed evidence of hDNA formation. In several, hDNA was symmetrical on one side of the DSB, suggesting that the two homologous regions undergoing recombination swapped single strands of the same polarity. These data are considered within the context of modified versions of the DSBR model.  相似文献   

8.
Rong YS  Golic KG 《Genetics》2003,165(4):1831-1842
In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisiae and mammalian cells. In contrast, by studying the repair of double-strand breaks generated by the I-SceI rare-cutting endonuclease, we find that the homologous chromosome is frequently used in Drosophila melanogaster, which we suggest is attributable to somatic pairing of homologous chromosomes in mitotic cells of Drosophila. We also find that Drosophila mitotic cells of the germ line, like yeast, employ the homologous recombinational repair pathway more often than imperfect nonhomologous end joining.  相似文献   

9.
In mammalian cells, all subunits of the DNA-dependent protein kinase (DNA-PK) have been implicated in the repair of DNA double-strand breaks and in V(D)J recombination. In the yeast Saccharomyces cerevisiae, we have examined the phenotype conferred by a deletion of HDF1, the putative homologue of the 70-kD subunit of the DNA-end binding Ku complex of DNA-PK. The yeast gene does not play a role in radiation-induced cell cycle checkpoint arrest in G(1) and G(2) or in hydroxyurea-induced checkpoint arrest in S. In cells competent for homologous recombination, we could not detect any sensitivity to ionizing radiation or to methyl methanesulfonate (MMS) conferred by a hdf1 deletion and indeed, the repair of DNA double-strand breaks was not impaired. However, if homologous recombination was disabled (rad52 mutant background), inactivation of HDF1 results in additional sensitization toward ionizing radiation and MMS. These results give further support to the notion that, in contrast to higher eukaryotic cells, homologous recombination is the favored pathway of double-strand break repair in yeast whereas other competing mechanisms such as the suggested pathway of DNA-PK-dependent direct break rejoining are only of minor importance.  相似文献   

10.
Double-strand gap repair in a mammalian gene targeting reaction.   总被引:16,自引:9,他引:16       下载免费PDF全文
To better understand the mechanism of homologous recombination in mammalian cells that facilitates gene targeting, we have analyzed the recombination reaction that inserts a plasmid into a homologous chromosomal locus in mouse embryonic stem cells. A partially deleted HPRT gene was targeted with various plasmids capable of correcting the mutation at this locus, and HPRT+ recombinants were directly selected in HAT medium. The structures of the recombinant loci were then determined by genomic Southern blot hybridizations. We demonstrate that plasmid gaps of 200, 600, and 2,500 bp are efficiently repaired during the integrative recombination reaction. Targeting plasmids that carry a double-strand break or gap in the region of DNA homologous to the target locus produce 33- to 140-fold more hypoxanthine-aminopterin-thymidine-resistant recombinants than did these same plasmids introduced in their uncut (supercoiled) forms. Our data suggest that double-strand gaps and breaks may be enlarged prior to the repair reaction since sequence heterologies carried by the incoming plasmids located close to them are often lost. These results extend the known similarities between mammalian and yeast recombination mechanisms and suggest several features of the insertional (O-type) gene targeting reaction that should be considered when one is designing mammalian gene targeting experiments.  相似文献   

11.
Homologous recombination provides a mechanism of DNA double-strand break repair (DSBR) that requires an intact, homologous template for DNA synthesis. When DNA synthesis associated with DSBR is convergent, the broken DNA strands are replaced and repair is accurate. However, if divergent DNA synthesis is established, over-replication of flanking DNA may occur with deleterious consequences. The RecG protein of Escherichia coli is a helicase and translocase that can re-model 3-way and 4-way DNA structures such as replication forks and Holliday junctions. However, the primary role of RecG in live cells has remained elusive. Here we show that, in the absence of RecG, attempted DSBR is accompanied by divergent DNA replication at the site of an induced chromosomal DNA double-strand break. Furthermore, DNA double-stand ends are generated in a recG mutant at sites known to block replication forks. These double-strand ends, also trigger DSBR and the divergent DNA replication characteristic of this mutant, which can explain over-replication of the terminus region of the chromosome. The loss of DNA associated with unwinding joint molecules previously observed in the absence of RuvAB and RecG, is suppressed by a helicase deficient PriA mutation (priA300), arguing that the action of RecG ensures that PriA is bound correctly on D-loops to direct DNA replication rather than to unwind joint molecules. This has led us to put forward a revised model of homologous recombination in which the re-modelling of branched intermediates by RecG plays a fundamental role in directing DNA synthesis and thus maintaining genomic stability.  相似文献   

12.
Gene conversion during vector insertion in embryonic stem cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Recombination of an insertion vector into its chromosomal homologue is a conservative event in that both the chromosomal and the vector sequences are preserved. However, gene conversion may accompany homologous recombination of an insertion vector. To examine gene conversion in more detail we have determined the targeting frequencies and the structure of the recombinant alleles generated with a series of vectors which target the hprt gene in embryonic stem cells. We demonstrate that gene conversion of the introduced mutation does not significantly limit homologous recombination and that gene conversion occurs without a sequence specific bias for five different mutations. The frequency of the loss of a vector mutation and the gain of a chromosomal sequence is inversely proportional to the distance between the vector mutation and the double-strand break. The loss of a chromosomal sequence and the gain of a vector mutation occurs at a low frequency.  相似文献   

13.
Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae, one can follow recombination by physically monitoring DNA after the synchronous induction of a double-strand break (DSB) in both wild-type and mutant cells. A particularly well-studied system has been the switching of yeast mating-type (MAT) genes, where a DSB can be induced synchronously by expression of the site-specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis-dependent strand annealing pathway leading to noncrossovers and a two-end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break-induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.  相似文献   

14.
Zhang N  Liu X  Li L  Legerski R 《DNA Repair》2007,6(11):1670-1678
DNA interstrand cross-linking agents have been widely used in chemotherapeutic treatment of cancer. The majority of interstrand cross-links (ICLs) in mammalian cells are removed via a complex process that involves the formation of double-strand breaks at replication forks, incision of the ICL, and subsequent error-free repair by homologous recombination. How double-strand breaks effect the removal of ICLs and the downstream homologous recombination process is not clear. Here, we describe a plasmid-based recombination assay in which one copy of the CFP gene is inactivated by a site-specific psoralen ICL and can be repaired by gene conversion with a mutated homologous donor sequence. We found that the homology-dependent recombination (HDR) is inhibited by the ICL. However, when we introduced a double-strand break adjacent to the site of the ICL, the removal of the ICL was enhanced and the substrate was funneled into a HDR repair pathway. This process was not dependent on the nucleotide excision repair pathway, but did require the ERCC1-XPF endonuclease and REV3. In addition, both the Fanconi anemia pathway and the mismatch repair protein MSH2 were required for the recombinational repair processing of the ICL. These results suggest that the juxtaposition of an ICL and a DSB stimulates repair of ICLs through a process requiring components of mismatch repair, ERCC1-XPF, REV3, Fanconi anemia proteins, and homologous recombination repair factors.  相似文献   

15.
A strong correlation between GC content and recombination rate is observed in many eukaryotes, which is thought to be due to conversion events linked to the repair of meiotic double-strand breaks. In several organisms, the length of conversion tracts has been shown to decrease exponentially with increasing distance from the sites of meiotic double-strand breaks. I show here that this behavior leads to a simple analytical model for the evolution and the equilibrium state of the GC content of sequences devoid of meiotic double-strand break sites. In the yeast Saccharomyces cerevisiae, meiotic double-strand breaks are practically excluded from protein-coding sequences. A good fit was observed between the predictions of the model and the variations of the average GC content of the third codon position (GC3) of S. cerevisiae genes. Moreover, recombination parameters that can be extracted by fitting the data to the model coincide with experimentally determined values. These results thus indicate that meiotic recombination plays an important part in determining the fluctuations of GC content in yeast coding sequences. The model also accounted for the different patterns of GC variations observed in the genes of Candida species that exhibit a variety of sexual lifestyles, and hence a wide range of meiotic recombination rates. Finally, the variations of the average GC3 content of human and chicken coding sequences could also be fitted by the model. These results suggest the existence of a widespread pattern of GC variation in eukaryotic genes due to meiotic recombination, which would imply the generality of two features of meiotic recombination: its association with GC-biased gene conversion and the quasi-exclusion of meiotic double-strand breaks from coding sequences. Moreover, the model points out to specific constraints on protein fragments encoded by exon terminal sequences, which are the most affected by the GC bias.  相似文献   

16.
Evidence for Conservative (Two-Progeny) DNA Double-Strand Break Repair   总被引:5,自引:2,他引:3  
T. Yokochi  K. Kusano    I. Kobayashi 《Genetics》1995,139(1):5-17
The double-strand break repair models for homologous recombination propose that a double-strand break in a duplex DNA segment is repaired by gene conversion copying a homologous DNA segment. This is a type of conservative recombination, or two-progeny recombination, which generates two duplex DNA segments from two duplex DNA segments. Transformation with a plasmid carrying a double-strand gap and an intact homologous DNA segment resulted in products expected from such conservative (two-progeny) repair in Escherichia coli cells with active E. coli RecE pathway (recBC sbcA) or with active bacteriophage λ Red pathway. Apparently conservative double-strand break repair, however, might result from successive events of nonconservative recombination, or one-progeny recombination, which generates only one recombinant duplex DNA segment from two segments, involving multiple plasmid molecules. Contribution of such intermolecular recombination was evaluated by transformation with a mixture of two isogenic parental plasmids marked with a restriction site polymorphism. Most of the gap repair products were from intramolecular and, therefore, conservative (two-progeny) reaction under the conditions chosen. Most were conservative even in the absence of RecA protein. The double-strand gap repair reaction was not affected by inversion of the unidirectional replication origin on the plasmid. These results demonstrate the presence of the conservative (two-progeny) double-strand break repair mechanism. These experiments do not rule out the occurrence of nonconservative (one-progeny) recombination since we set up experimental conditions that should favor detection of conservative (two-progeny) recombination.  相似文献   

17.
Stress-induced mutation is a collection of molecular mechanisms in bacterial, yeast and human cells that promote mutagenesis specifically when cells are maladapted to their environment, i.e. when they are stressed. Here, we review one molecular mechanism: double-strand break (DSB)-dependent stress-induced mutagenesis described in starving Escherichia coli. In it, the otherwise high-fidelity process of DSB repair by homologous recombination is switched to an error-prone mode under the control of the RpoS general stress response, which licenses the use of error-prone DNA polymerase, DinB, in DSB repair. This mechanism requires DSB repair proteins, RpoS, the SOS response and DinB. This pathway underlies half of spontaneous chromosomal frameshift and base substitution mutations in starving E. coli [Proc Natl Acad Sci USA 2011;108:13659-13664], yet appeared less efficient in chromosomal than F' plasmid-borne genes. Here, we demonstrate and quantify DSB-dependent stress-induced reversion of a chromosomal lac allele with DSBs supplied by I-SceI double-strand endonuclease. I-SceI-induced reversion of this allele was previously studied in an F'. We compare the efficiencies of mutagenesis in the two locations. When we account for contributions of an F'-borne extra dinB gene, strain background differences, and bypass considerations of rates of spontaneous DNA breakage by providing I-SceI cuts, the chromosome is still ~100 times less active than F. We suggest that availability of a homologous partner molecule for recombinational break repair may be limiting. That partner could be a duplicated chromosomal segment or sister chromosome.  相似文献   

18.
To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.  相似文献   

19.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

20.
Actinomycetes are Gram-positive bacteria with a complex life cycle. They produce many pharmaceutically relevant secondary metabolites, including antibiotics and anticancer drugs. However, there is a limited number of biotechnological applications available as opposed to genetic model organisms like Bacillus subtilis or Escherichia coli. We report here a system for the functional expression of a synthetic gene encoding the I-SceI homing endonuclease in several streptomycetes. Using the synthetic sce(a) gene, we were able to create controlled genomic DNA double-strand breaks. A mutagenesis system, based on the homing endonuclease I-SceI, has been developed to construct targeted, non-polar, unmarked gene mutations in Streptomyces sp. Tü6071. In addition, we have shown that homologous recombination is a major pathway in streptomycetes to repair an I-SceI-generated DNA double-strand break. This novel I-SceI-based tool will be useful in fundamental studies on the repair mechanism of DNA double-strand breaks and for a variety of biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号