首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.  相似文献   

2.
3.
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.  相似文献   

4.
N6-Methyladenosine 1618 of Escherichia coli 23 S rRNA is located in a cluster of modified nucleotides 12 Å away from the nascent peptide tunnel of the ribosome. Here, we describe the identification of gene ybiN encoding an enzyme responsible for methylation of A1618. Knockout of the ybiN gene leads to loss of modification at A1618. The modification is restored if ybiN knock-out strain has been co-transformed with a plasmid expressing the ybiN gene. On the basis of these results we suggest that ybiN gene should be renamed to rlmF in accordance with the accepted nomenclature for rRNA methyltransferases. Recombinant YbiN protein is able to methylate partially deproteinized 50 S ribosomal subunit, so-called 3.5 M LiCl core particle in vitro, but neither the completely assembled 50 S subunits nor completely deproteinized 23 S rRNA. Both lack of the ybiN gene and it's over-expression leads to growth retardation and loss of cell fitness comparative to the parental strain. It might be suggested that A1618 modification could be necessary for the exit tunnel interaction with some unknown regulatory peptides.  相似文献   

5.
Crystal structures of the 50 S ribosomal subunit from Haloarcula marismortui complexed with two antibiotics have identified new sites at which antibiotics interact with the ribosome and inhibit protein synthesis. 13-Deoxytedanolide binds to the E site of the 50 S subunit at the same location as the CCA of tRNA, and thus appears to inhibit protein synthesis by competing with deacylated tRNAs for E site binding. Girodazole binds near the E site region, but is somewhat buried and may inhibit tRNA binding by interfering with conformational changes that occur at the E site. The specificity of 13-deoxytedanolide for eukaryotic ribosomes is explained by its extensive interactions with protein L44e, which is an E site component of archaeal and eukaryotic ribosomes, but not of eubacterial ribosomes. In addition, protein L28, which is unique to the eubacterial E site, overlaps the site occupied by 13-deoxytedanolide, precluding its binding to eubacterial ribosomes. Girodazole is specific for eukarytes and archaea because it makes interactions with L15 that are not possible in eubacteria.  相似文献   

6.
Abstract For the investigation of enzymes involved in epidermin biosynthesis it is necessary to produce sufficient amounts of preepidermin (EpiA) as a substrate and to design EpiA detection systems. Therefore, EpiA was expressed in Escherichia coli using a malE-epiA fusion. The identity of purified EpiA was confirmed by ion spray mass spectrometry and amino acid sequencing. For EpiA detection, anti-EpiA antisera were raised. Upon prolonged incubation, factor Xa not only cleaved EpiA from the fusion protein, but also less efficiently cleaved EpiA internally between R−1 and I+1. The internal factor Xa cleavage site of EpiA was masked by altering the sequence -A−4-E-P-R−1- to -A−4-E-P-Q−1- by site-directed mutagenesis.  相似文献   

7.
8.
Pseudouridines in the stable RNAs of Bacteria are seldom subjected to further modification. There are 11 pseudouridine (Ψ) sites in Escherichia coli rRNA, and further modification is found only at Ψ1915 in 23S rRNA, where the N-3 position of the base becomes methylated. Here, we report the identity of the E. coli methyltransferase that specifically catalyzes methyl group addition to form m3Ψ1915. Analyses of E. coli rRNAs using MALDI mass spectrometry showed that inactivation of the ybeA gene leads to loss of methylation at nucleotide Ψ1915. Methylation is restored by complementing the knockout strain with a plasmid-encoded copy of ybeA. Homologs of the ybeA gene, and thus presumably the ensuing methylation at nucleotide m3Ψ1915, are present in most bacterial lineages but are essentially absent in the Archaea and Eukaryota. Loss of ybeA function in E. coli causes a slight slowing of the growth rate. Phylogenetically, ybeA and its homologs are grouped with other putative S-adenosylmethionine-dependent, SPOUT methyltransferase genes in the Cluster of Orthologous Genes COG1576; ybeA is the first member to be functionally characterized. The YbeA methyltransferase is active as a homodimer and docks comfortably into the ribosomal A site without encroaching into the P site. YbeA makes extensive interface contacts with both the 30S and 50S subunits to align its active site cofactor adjacent to nucleotide Ψ1915. Methylation by YbeA (redesignated RlmH for rRNA large subunit methyltransferase H) possibly functions as a stamp of approval signifying that the 50S subunit has engaged in translational initiation.  相似文献   

9.
Song XM  Forsgren A  Janson H 《Gene》1999,230(2):287-293
The fragmentation of 23S rRNA of 22 Haemophilus influenzae strains and eight strains belonging to other Haemophilus species was investigated. Instead of intact molecules, the 23S rRNA molecules were found to be cleaved into two to five smaller conserved fragments in most strains examined, especially in H. influenzae type b (5/6) and nontypeable strains (5/5). One or two conserved potential cleavage sites were identified by PCR analysis of the strains showing a fragmented 23S rRNA pattern. The relevant nucleotide sequences were determined and compared to H. influenzae Rd, which contains intact 23S rRNA molecules. An identical 112 bp long intervening sequence (IVS) at position 542 and a conserved 121–123 bp IVS sequence at position 1171 were found in two H. influenzae type b strains and one nontypeable strain. Among the strains with fragmented 23S rRNA, nearly half showed a heterogeneous cleavage pattern due to the dispersion of IVSs among different 23S rRNA operons. The localization of the conserved H. influenzae IVSs coincided well with the extensively studied IVSs among other bacteria, but differed in nucleotide sequence from any other reported IVSs. Therefore, the IVSs of Haemophilus 23S rRNA may originate from a common source that is independent of other bacteria.  相似文献   

10.
Enzymes from thermophilic and hyper‐thermophilic organisms have an intrinsic high stability. Understanding the mechanisms behind their high stability will be important knowledge for the engineering of novel enzymes with high stability. Lysine methylation of proteins is prevalent in Sulfolobus, a genus of hyperthermophilic and acidophilic archaea. Both unspecific and temperature dependent lysine methylations are seen, but the significance of this post‐translational modification has not been investigated. Here, we test the effect of eliminating in vivo lysine methylation on the stability of an esterase (EstA). The enzyme was purified from the native host S. islandicus as well as expressed as a recombinant protein in E. coli, a mesophilic host that does not code for any machinery for in vivo lysine methylation. We find that lysine mono methylation indeed has a positive effect on the stability of EstA, but the effect is small. The effect of the lysine methylation on protein stability is secondary to that of protein expression in E. coli, as the E. coli recombinant enzyme is compromised both on stability and activity. We conclude that these differences are not attributed to any covalent difference between the protein expressed in hyperthermophilic versus mesophilic hosts.  相似文献   

11.
Summary Oligonucleotide fingerprinting shows the precursor form of the 23S ribosomal RNA fromBacillus megaterium to be larger than its mature counterpart, by some 8 percent, or approximately 250 nucleotides. It can further be shown that the 23SrRNA precursor doesnot contain the 5SrRNA sequence, as had been previously suggested.  相似文献   

12.
Haloarcula marismortui formed acetate during aerobic growth on glucose and utilized acetate as growth substrate. On glucose/acetate mixtures diauxic growth was observed with glucose as the preferred substrate. Regulation of enzyme activities, related to glucose and acetate metabolism was analyzed. It was found that both glucose dehydrogenase (GDH) and ADP-forming acetyl-CoA synthetase (ACD) were upregulated during periods of glucose consumption and acetate formation, whereas both AMP-forming acetyl-CoA synthetase (ACS) and malate synthase (MS) were downregulated. Conversely, upregulation of ACS and MS and downregulation of ACD and GDH were observed during periods of acetate consumption. MS was also upregulated during growth on peptides in the absence of acetate. From the data we conclude that a glucose-inducible ACD catalyzes acetate formation whereas acetate activation is catalyzed by an acetate-inducible ACS; both ACS and MS are apparently induced by acetate and repressed by glucose.  相似文献   

13.
The disulfide bonds in the galactose-specific lectin SEL 24K from the egg of the Chinook salmon Oncorhynchus tshawytscha were determined by mass spectrometry. Four predictive in silico tools were used to determine the oxidation state of cysteines in the sequence and possible location of the disulfide bonds. A combination of tryptic digestion, HPLC separation, and chemical modifications were used to establish the location of seven disulfide bonds and one pair of free cysteines. After proteolysis, peptides containing one or two disulfide bonds were identified by reduction and mass spectral comparison. MALDI mass spectrometry was supported by chemical modification (iodoacetamide) and in silico digestion. The assignments of disulfide bonds were further confirmed by mass spectral fragmentation studies including in-source dissociation (ISD) and collision-induced dissociation (CID). The experimentally determined disulfide bonds and free Cys residues were only partially consistent with those generated by several automated public-domain algorithms.  相似文献   

14.
Insertions were introduced by a two-step mutagenesis procedure into each of five double-helical regions of Escherichia coli 23 S rRNA, so as to extend the helix concerned by 17 bp. The helices chosen were at sites within the 23 S molecule (h9, h25, h45, h63 and h98) where significant length variations between different species are known to occur. At each of these positions, with the exception of h45, there are also significant differences between the 23 S rRNAs of E. coli and Haloarcula marismortui. Plasmids carrying the insertions were introduced into an E. coli strain lacking all seven rrn operons. In four of the five cases the cells were viable and 50 S subunits could be isolated; only the insertion in h63 was lethal. The modified subunits were examined by cryo-electron microscopy (cryo-EM), with a view to locating extra electron density corresponding to the insertion elements. The results were compared both with the recently determined atomic structure of H. marismortui 23 S rRNA in the 50 S subunit, and with previous 23 S rRNA modelling studies based on cryo-EM reconstructions of E. coli ribosomes. The insertion element in h45 was located by cryo-EM at a position corresponding precisely to that of the equivalent helix in H. marismortui. The insertion in h98 (which is entirely absent in H. marismortui) was similarly located at a position corresponding precisely to that predicted from the E. coli modelling studies. In the region of h9, the difference between the E. coli and H. marismortui secondary structures is ambiguous, and the extra electron density corresponding to the insertion was seen at a location intermediate between the position of the nearest helix in the atomic structure and that in the modelled structure. In the case of h25 (which is about 50 nucleotides longer in H. marismortui), no clear extra cryo-EM density corresponding to the insertion could be observed.  相似文献   

15.
16.
Shankar N  Kennedy SD  Chen G  Krugh TR  Turner DH 《Biochemistry》2006,45(39):11776-11789
Internal loops play an important role in structure and folding of RNA and in recognition of RNA by other molecules such as proteins and ligands. An understanding of internal loops with propensities to form a particular structure will help predict RNA structure, recognition, and function. The structures of internal loops 5' 1009CUAAG1013 3'/3' 1168GAAGC1164 5' and 5' 998CUAAG1002 3'/3' 1157GAAGC1153 5' from helix 40 of the large subunit rRNA in Deinococcus radiodurans and Escherichia coli, respectively, are phylogenetically conserved, suggesting functional relevance. The energetics and NMR solution structure of the loop were determined in the duplex 5' 1GGCUAAGAC9 3'/3' 18CCGAAGCUG10 5'. The internal loop forms a different structure in solution and in the crystal structures of the ribosomal subunits. In particular, the crystal structures have a bulged out adenine at the equivalent of position A15 and a reverse Hoogsteen UA pair (trans Watson-Crick/Hoogsteen UA) at the equivalent of U4 and A14, whereas the solution structure has a single hydrogen bond UA pair (cis Watson-Crick/sugar edge A15U4) between U4 and A15 and a sheared AA pair (trans Hoogsteen/sugar edge A14A5) between A5 and A14. There is cross-strand stacking between A6 and A14 (A6/A14/A15 stacking pattern) in the NMR structure. All three structures have a sheared GA pair (trans Hoogsteen/sugar edge A6G13) at the equivalent of A6 and G13. The internal loop has contacts with ribosomal protein L20 and other parts of the RNA in the crystal structures. These contacts presumably provide the free energy to rearrange the base pairing in the loop. Evidently, molecular recognition of this internal loop involves induced fit binding, which could confer several advantages. The predicted thermodynamic stability of the loop agrees with the experimental value, even though the thermodynamic model assumes a Watson-Crick UA pair.  相似文献   

17.
H Hummel  A B?ck 《Biochimie》1987,69(8):857-861
Mutants of Halobacterium (H.) halobium and H. cutirubrum were isolated which are resistant to the 70S ribosome inhibitor thiostrepton. Using primer extension analysis, resistance was shown to correlate with base changes at position 1159, which corresponds to position 1067 of the E. coli 23S rRNA. In four mutants, A1159 was replaced by U, in one mutant by G. The results show that not only methylation (Cundliffe & Thompson (1979) Nature 278, 859-861) of A1067 (E. coli nomenclature), but also base changes at this position cause high-level resistance to thiostrepton.  相似文献   

18.
M F Guérin  D Hayes 《Biochimie》1983,65(6):345-354
Total RNA prepared from E. coli by several extraction procedures behaves as a mixture of covalently continuous heat stable 23S, 16S and 4-5S components. 16S rRNA remains heat stable after isolation from such preparations, whereas isolated 23S rRNA is heat labile but becomes heat stable after EDTA treatment. This and other evidence leads to the conclusion that heat lability of purified 23S rRNA is due, not to nuclease contamination of the type observed in earlier studies of the stability of this RNA, but to polyvalent cation catalyzed temperature-dependent scission of phosphodiester bonds. Heat stability of 23S rRNA in total RNA is due to the presence in these preparations of a contaminant which appears to act as a chelator of polyvalent cations. This material is similar or identical to the pyrogenic E. coli lipopolysaccharide described by Westphal and coll.  相似文献   

19.
Protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM, E.C. 2.1.1.77) was previously shown to be enzymatically methyl esterified in an autocatalytic manner at altered aspartyl residues; methyl esters are observed in a subpopulation of the enzyme termed thePCM fraction [Lindquist and McFadden (1994),J. Protein Chem. 13, 23–30]. The altered aspartyl sites serving as methyl acceptors inPCM have now been localized by using proteolytic enzymes and chemical cleavage techniques in combination with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify fragments of the [3H]automethylated enzyme that contain a [3H]methyl ester. Methylation was positively identified at positions Asn188 and Asp217 in the enzyme sequence, a consequence of the spontaneous alteration of these sites tol-isoaspartyl ord-aspartyl sites and their methylation by active PCM molecules. The identification of more than one site of automethylation shows thatPCM is not a homogeneous population of damaged PCM molecules, but rather a complex population of molecules with a variety of age-altered damage sites.Abbreviations PCM protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase - EDTA disodium ethylenediaminetetraacetate - PMSF phenylmethylsulfonyl fluoride - TEA trifluoroacetic acid - HPLC high-pressure liquid chromatography  相似文献   

20.
The fragmentation of 23S rRNA of 22 Haemophilus influenzae strains and eight strains belonging to other Haemophilus species was investigated. Instead of intact molecules, the 23S rRNA molecules were found to be cleaved into two to five smaller conserved fragments in most strains examined, especially in H. influenzae type b (5/6) and nontypeable strains (5/5). One or two conserved potential cleavage sites were identified by PCR analysis of the strains showing a fragmented 23S rRNA pattern. The relevant nucleotide sequences were determined and compared to H. influenzae Rd, which contains intact 23S rRNA molecules. An identical 112 bp long intervening sequence (IVS) at position 542 and a conserved 121–123 bp IVS sequence at position 1171 were found in two H. influenzae type b strains and one nontypeable strain. Among the strains with fragmented 23S rRNA, nearly half showed a heterogeneous cleavage pattern due to the dispersion of IVSs among different 23S rRNA operons. The localization of the conserved H. influenzae IVSs coincided well with the extensively studied IVSs among other bacteria, but differed in nucleotide sequence from any other reported IVSs. Therefore, the IVSs of Haemophilus 23S rRNA may originate from a common source that is independent of other bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号