首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin‐based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB‐mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial‐induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin‐based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell‐to‐cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N‐WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42‐GTP or Tuba/N‐WASP interaction.  相似文献   

3.
Bacterial pathogens have developed a variety of strategies to induce their own internalization into mammalian cells which are normally nonphagocytic. The Gram-positive bacterium Listeria monocytogenes enters into many cultured cell types using two bacterial surface proteins, InlA (internalin) and InlB. In both cases, entry takes place after engagement of a receptor and induction of a series of signaling events.  相似文献   

4.
Here we report that Caenorhabditis elegans nematodes fed Listeria monocytogenes die over the course of several days, as a consequence of an accumulation of bacteria in the worm intestine. Mutant strains previously shown to be important for virulence in mammalian models were also found to be attenuated in their virulence in C. elegans. However, ActA, which is required for actin-based intracellular motility, appears to be dispensable during infection of C. elegans, indicating that L. monocytogenes remains extracellular in C. elegans.  相似文献   

5.
6.
In causing disease, pathogens outmaneuver host defenses through a dedicated arsenal of virulence determinants that specifically bind or modify individual host molecules. This dedication limits the intruder to a defined range of hosts. Newly emerging diseases mostly involve existing pathogens whose arsenal has been altered to allow them to infect previously inaccessible hosts. We have emulated this chance occurrence by extending the host range accessible to the human pathogen Listeria monocytogenes by the intestinal route to include the mouse. Analyzing the recognition complex of the listerial invasion protein InlA and its human receptor E-cadherin, we postulated and verified amino acid substitutions in InlA to increase its affinity for E-cadherin. Two single substitutions increase binding affinity by four orders of magnitude and extend binding specificity to include formerly incompatible murine E-cadherin. By rationally adapting a single protein, we thus create a versatile murine model of human listeriosis.  相似文献   

7.
8.
Listeria monocytogenes grows in the host cytosol and uses the surface protein ActA to promote actin polymerisation and mediate actin‐based motility. ActA, along with two secreted bacterial phospholipases C, also mediates avoidance from autophagy, a degradative process that targets intracellular microbes. Although it is known that ActA prevents autophagic recognition of L. monocytogenes in epithelial cells by masking the bacterial surface with host factors, the relative roles of actin polymerisation and actin‐based motility in autophagy avoidance are unclear in macrophages. Using pharmacological inhibition of actin polymerisation and a collection of actA mutants, we found that actin polymerisation prevented the colocalisation of L. monocytogenes with polyubiquitin, the autophagy receptor p62, and the autophagy protein LC3 during macrophage infection. In addition, the ability of L. monocytogenes to stimulate actin polymerisation promoted autophagy avoidance and growth in macrophages in the absence of phospholipases C. Time‐lapse microscopy using green fluorescent protein‐LC3 macrophages and a probe for filamentous actin showed that bacteria undergoing actin‐based motility moved away from LC3‐positive membranes. Collectively, these results suggested that although actin polymerisation protects the bacterial surface from autophagic recognition, actin‐based motility allows escape of L. monocytogenes from autophagic membranes in the macrophage cytosol.  相似文献   

9.
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.  相似文献   

10.
The facultative intracellular bacterial pathogen Listeria monocytogenes has evolved multiple strategies to invade a large panel of mammalian cells. Host cell invasion is critical for several stages of listeriosis pathology such as the initial crossing of the host intestinal barrier and the successive colonization of diverse target organs including the placenta. In this review, we address the main molecular mechanisms known to be used by L. monocytogenes during invasion of nonphagocytic cells and host tissues.  相似文献   

11.
12.
The purpose of this study was to evaluate gene expression profiles in the liver and blood for prediction of infection severity from Listeria monocytogenes (LM). Mice were injected with medium broth (control) or a nonlethal or lethal dose of LM and sacrificed 6 h later. Gene expression changes were determined using Affymetrix MGU74Av2 GeneChips and confirmed by real-time polymerase chain reaction analysis. We identified discernable genes whose gene expression profiles can be used in pattern recognition to predict and classify samples in differently treated groups, with >or=90% accuracy in liver samples and 80% accuracy in blood at prediction; however, different genes were predictive in each tissue. Our results suggest that gene expression profiling in response to LM in mice may be able to distinguish samples in groups with varying severity of infection and provide information in finding molecular mechanisms and early biomarkers for subsequent conventional clinical endpoints.  相似文献   

13.
Listeria monocytogenes is an intracellular pathogen that is able to colonize the cytosol of macrophages. Here we examined the interaction of this pathogen with autophagy, a host cytosolic degradative pathway that constitutes an important component of innate immunity towards microbial invaders. L. monocytogenes infection induced activation of the autophagy system in macrophages. At 1 h post infection (p.i.), a population of intracellular bacteria ( approximately 37%) colocalized with the autophagy marker LC3. These bacteria were within vacuoles and were targeted by autophagy in an LLO-dependent manner. At later stages in infection (by 4 h p.i.), the majority of L. monocytogenes escaped into the cytosol and rapidly replicated. At these times, less than 10% of intracellular bacteria colocalized with LC3. We found that ActA expression was sufficient to prevent autophagy of bacteria in the cytosol of macrophages. Surprisingly, ActA expression was not strictly necessary, indicating that other virulence factors were involved. Accordingly, we also found a role for the bacterial phospholipases, PI-PLC and PC-PLC, in autophagy evasion, as bacteria lacking phospholipase expression were targeted by autophagy at later times in infection. Together, our results demonstrate that L. monocytogenes utilizes multiple mechanisms to avoid destruction by the autophagy system during colonization of macrophages.  相似文献   

14.
Type I IFN (IFN-I) increase the sensitivity of cells and mice to lethal infection with Listeria monocytogenes . Therefore the amount of IFN-I produced during infection might be an important factor determining Listeria virulence. Two commonly used strains of L. monocytogenes , EGD and LO28, were identified as, respectively, low and high inducers of IFN-I synthesis in infected macrophages. Increased IFN-I production resulted from the stronger ability of the LO28 strain to trigger the IRF3 signalling pathway and correlated with an increased sensitization of macrophages to lethal infection. In contrast, stimulation of NFκB, MAPK, or inflammasome signalling by the LO28 and EGD strains did not differ significantly. The LO28 strain was more virulent in wild-type (wt) C57/BL6 mice than the EGD strain whereas both strains were similarly virulent in IFN-I receptor-deficient C57/BL6 mice. Together our data suggest that isolates of wt L. monocytogenes differ in their ability to trigger the IRF3 signalling pathway and IFN-I production, and that the amount of IFN-I produced during infection is an important determinant of Listeria virulence.  相似文献   

15.
As iron is vital for all cells, host sequestration of iron provides a significant barrier to bacterial infection. The absolute requirement for iron has driven the evolution of refined systems by which pathogenic bacteria such as Listeria monocytogenes can competitively acquire this element during host infection. This process is coordinated, at least partly, by the Ferric Uptake Regulator (Fur). Recent studies have identified loci within the listerial Fur-regulon and have characterized specific systems involved in iron uptake from various sources. This work has greatly advanced our knowledge of the mechanisms underpinning iron homeostasis in L. monocytogenes. A greater understanding of the molecular mechanisms by which pathogenic bacteria acquire iron is significant from both a food safety and public-health perspective.  相似文献   

16.
The facultative intracellular, Gram-positive bacterium Listeria monocytogenes invades phagocytic and non-phagocytic cells from the tissues and organs of a wide variety of animals and humans. Here, we report the use of these bacteria as vehicles for gene transfer. Eukaryotic expression plasmids were introduced into the nucleus of host cells following lysis of the intracytosolic, plasmid-carrying bacteria with antibiotics. Cell lines of different tissues and species could be transfected in this way. We examined bacterial properties required for delivery of the expression plasmids and found that this was strictly dependent on the ability of these bacteria to both invade eukaryotic cells and egress from the vacuole into the cytosol of the infected host cells. Macrophage-like cell lines or primary, peritoneal macrophages proved to be almost refractory to Listeria ‐mediated gene transfer. Thus, attenuated L. monocytogenes represents a serious candidate for consideration as a DNA-transfer vehicle for in vivo somatic gene therapy. The potential for oral administration of L. monocytogenes and the ease in producing and cultivating recombinant strains are further attributes that make its use as a gene transfer vehicle attractive.  相似文献   

17.
18.
Listeria monocytogenes in Nature   总被引:14,自引:1,他引:13       下载免费PDF全文
Samples from 12 farms were examined during two successive spring and early autumn seasons. L. monocytogenes was isolated from vegetation or soil taken from 11 of the 12 farms and from 6 of the 7 nonagricultural sites. A total of 27 strains were isolated from the 19 sites. The organism was not isolated from any of the autumn collections.  相似文献   

19.
20.
Hydroxy acid-based matrix metalloproteinase (MMP) inhibitors have been shown to inhibit tumor infiltration and growth, endotoxin shock, and acute graft-versus-host disease. Blockade of the release of soluble tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand (CD95L; FasL) from cell-associated forms is reportedly involved in the mechanism of the drug effect. We investigated the effect of a MMP inhibitor, KB-R7785, on host resistance against Listeria monocytogenes infection, in which TNF-alpha is essentially required for the defense, in mice. The administration of KB-R7785 exacerbated listeriosis, while the drug prevented lethal shock induced by lipopolysaccharide and D-galactosamine. KB-R7785 inhibited soluble TNF-alpha production in spleen cell cultures stimulated by heat-killed L. monocytogenes and the drug treatment reduced serum TNF-alpha levels in infected mice, whereas the compound was ineffective on the modulation of interferon-gamma and interleukin-10 production. The effect of KB-R7785 was considered to be dependent on TNF-alpha because the drug failed to affect L. monocytogenes infection in anti-TNF-alpha monoclonal antibody-treated mice and TNF-alpha knockout mice. Anti-CD95L monoclonal antibody was also ineffective on the infection. These results suggest that induction of infectious diseases, to which TNF-alpha is critical in host resistance, should be considered in MMP inhibitor-treated hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号