首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao Y  Zhao L  Yang J  Yang J 《Biomacromolecules》2012,13(6):1837-1844
This study is devoted to developing amphiphilic block polymers based on phenylborate ester, which can self-assemble to form nanoparticles, as a glucose-sensitive drug carrier. Poly(ethylene glycol)-block-poly[(2-phenylboronic esters-1,3-dioxane-5-ethyl) methylacrylate] (MPEG5000-block-PBDEMA) was fabricated with MPEG5000-Br as a macroinitiator via atom transfer radical polymerization (ATRP). Using the solvent evaporation method, these block polymers can disperse in aqueous milieu to self-assemble into micellar aggregates with a spherical core-shell structure. Zeta potential and fluorescence techniques analysis showed a good purification effect, high encapsulation efficiency, and loading capacity of fluorescein isothiocyanate (FITC)-insulin-loaded polymeric micelles under optimal conditions. The in vitro insulin release profiles revealed definite glucose-responsive behavior of the polymeric micelles at pH 7.4 and 37 °C, depending on the environmental glucose concentration and the chemical composition of the block polymers. Further, circular dichroism spectroscopy demonstrated that the overall tertiary structure of the released insulin was in great agreement with standard insulin. (1)H NMR results of the polymeric micelles during glucose-responsive process supposed one possible insulin release mechanism via the polymer polarity transition from amphiphilic to double hydrophilic. The analysis of L929 mouse fibroblast cells viability suggested that the polymeric micelles from MPEG5000-block-PPBDEMA had low cell toxicity. The block polymers containing phenylborate ester that responded to changes in the glucose concentration at neutral pH are being aimed for use in self-regulated insulin delivery.  相似文献   

2.
We have designed a novel aggregate of DNA block copolymer (DBC) that is sensitive to hypoxic X-irradiation. The DBC consists of tetrahydropyrane-protected 2-hydroxyethyl methacrylate as a hydrophobic unit and oligodeoxynucleotides as a hydrophilic unit, which are linked to a radiation-sensitive disulfide bond. The DBC self-assembled efficiently to form aggregates that encapsulated small molecules such as nile red and pyrene. Hypoxic X-irradiation could then induce reductive degradation of the DBC aggregates via an exchange reaction of the disulfide bond to release guest molecules.  相似文献   

3.
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug–polymer were examined. Structural analysis showed that drug–polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30–55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.  相似文献   

4.
A library of polyurethanes and polyureas with different hydrophobicities containing the same acid-degradable dimethyl ketal moiety embedded in the polymer main chain have been prepared. All polymers were synthesized using an AA-BB type step-growth polymerization by reaction of bis(p-nitrophenyl carbamate/carbonate) or diisocyanate monomers with an acid-degradable, ketal-containing diamine. These polymers were designed to hydrolyze at different rates in mildly acidic conditions as a function of their hydrophobicity to afford small molecules only with no polymeric byproduct. The library of polymers was screened for the formation of microparticles using a double emulsion technique. The microparticles that were obtained degraded significantly faster at acidic pH (5.0) than at physiological pH (7.4) with degradation kinetics related to the hydrophobicity of the starting polymer. In vitro studies demonstrated the ability of the FITC-BSA loaded microparticles to be phagocytosed by macrophages resulting in a 10-fold increase in the protein uptake compared to a free protein control; in addition, the microparticles were found to be nontoxic at the concentrations tested of up to 1 mg/mL. The ease of preparation of the polymers coupled with the ability to tune their hydrophobicity and the high acid sensitivity of the microparticles identify this new class of materials as promising candidates for the delivery of bioactive materials.  相似文献   

5.
Amyloid protein (Abeta1-40) aggregation and conformation was examined using native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, and the results compared with those obtained by atomic force microscopy, and with Congo red binding, sedimentation and turbidity assays. The amount of Abeta aggregation measured was different, depending upon the method used. Incubation for 15 min at pH 5.0 or in the presence of Fe2+, Cu2+ or Zn2+ did not alter the level of Abeta oligomers observed on SDS and native gels. However, the slow aggregation of Abeta to form high molecular mass species over 5 days was inhibited. In contrast, when Abeta aggregation was monitored using a Congo red binding assay or sedimentation assay, a rapid increase in Abeta aggregation was observed after incubation for 15 min at pH 5.0, or in the presence of Fe2+, Cu2+ or Zn2+. The low pH-, Zn2+- or Cu2+-induced Abeta aggregation measured in a turbidity assay was reversible. In contrast, a considerable proportion of the Abeta aggregation measured by native and SDS/PAGE was stable. Atomic force microscopy studies showed that Abeta aged at pH 5.0 or in the presence of Zn2+ produced larger looser rod-shaped aggregates than at pH 7.4. Abeta that had been aged at pH 7.4 was more cytotoxic than Abeta aged at pH 5.0. Taken together, the results suggest that Abeta oligomerizes via two mutually exclusive mechanisms to form two different types of aggregates, which differ in their cytotoxic properties.  相似文献   

6.
Protein aggregation into oligomers and mature fibrils are associated with more than 20 diseases in humans. The interactions between cationic surfactants dodecyltrimethylammonium bromide (DTAB) and tetradecyltrimethylammonium bromide (TTAB) with varying alkyl chain lengths and bovine liver catalase (BLC) were examined by various biophysical approaches. The delicate coordination of electrostatic and hydrophobic interactions with protein, play imperative role in aggregation. In this article, we have reconnoitered the relation between charge, hydrophobicity and cationic surfactants DTAB and TTAB on BLC at pH 7.4 and 9.4 which are two and four units above pI, respectively. We have used techniques like turbidity, Rayleigh light scattering, far-UV CD, ThT, ANS, Congo red binding assay, DLS, and transmission electron microscopy. The low concentration ranges of DTAB (0–600 μM) and TTAB (0–250 μM) were observed to increase aggregation at pH 9.4. Nevertheless, at pH 7.4 only TTAB was capable of inducing aggregate. DTAB did not produce any significant change in secondary structure at pH 7.4 suggestive of the role of respective charges on surfactants and protein according to the pI and alkyl chain length. The morphology of aggregates was further determined by TEM, which proved the existence of a fibrillar structure. The surfactants interaction with BLC was primarily electrostatic as examined by ITC. Our work demystifies the critical role of charge as well as hydrophobicity in amyloid formation.  相似文献   

7.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs (NONO-coxibs) wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-c) NO-donor moiety is attached directly to the carboxylic acid group of 1-(4-methanesulfonylphenyl)-5-aryl-1H-pyrazol-3-carboxylic acids were synthesized. The diazen-1-ium-1,2-diolate compounds 11a-c all released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (7.7-9.3% range). In comparison, the percentage of NO released was significantly higher (67.5-73.6% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acid (9a-c) would be released from the parent NONO-coxib upon in vivo cleavage by non-specific serum esterases. The 1-(4-methanesulfonylphenyl)-5-(4-H, 4-F or 4-Me-phenyl)-1H-pyrazol-3-carboxylic acids (9a-c) exhibited AI activities (ID(50)=85.2-104.4 mg/kg po range) between that exhibited by the reference drugs aspirin (ID(50)=128.7 mg/kg po) and celecoxib (ID(50)=10.8 mg/kg po). Hybrid ester anti-inflammatory/NO-donor prodrugs (NONO-coxibs) offers a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

8.
A novel group of hybrid nitric oxide-releasing anti-inflammatory drugs (11) possessing a 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, or 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, nitric oxide (.NO) donor moiety attached via a one-carbon methylene spacer to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. These ester prodrugs (11) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.94-31.6 microM range). All compounds released .NO upon incubation with phosphate buffer (PBS) at pH 7.4 (3.2-11.3% range). In comparison, the percentage of .NO released was significantly higher (48.6-75.3% range) when these hybrid ester prodrugs were incubated in the presence of rat serum. These incubation studies suggest that both .NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases. O(2)-[(E)-2-(4-Acetylaminophenyl)-3-(4-methanesulfonylphenyl)acryloyloxymethyl]-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11f) is a moderately potent (IC(50)=0.94 microM) and selective (SI>104) COX-2 inhibitor that released 73% of the theoretical maximal release of two molecules of .NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester .NO-donor prodrugs offer a potential drug design concept for the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular side effects.  相似文献   

9.
A new group of hybrid nitric oxide-releasing anti-inflammatory drugs wherein an O(2)-acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (11a-d), or 2-nitrooxyethyl (12a-d), (*)NO-donor moiety is attached directly to the carboxylic acid group of (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acids were synthesized. The 2-nitrooxyethyl ester prodrugs (12a-d) all exhibited in vitro inhibitory activity against the cyclooxygenase-2 (COX-2) isozyme (IC(50)=0.07-2.8 microM range). All compounds released a low amount of (*)NO upon incubation with phosphate buffer (PBS) at pH 7.4 (1.0-4.8% range). In comparison, the percentage (*)NO released was significantly higher (76.2-83.0% range) when the diazen-1-ium-1,2-diolate ester prodrugs were incubated in the presence of rat serum, or moderately higher (7.6-10.1% range) when the nitrooxyethyl ester prodrugs were incubated in the presence of L-cysteine. These incubation studies suggest that both (*)NO and the parent anti-inflammatory (E)-3-(4-methanesulfonylphenyl)-2-(phenyl)acrylic acid would be released upon in vivo cleavage by non-specific serum esterases in the case of the diazen-1-ium-1,2-diolate esters (11a-d), or interaction with systemic thiols in the case of the nitrate esters (12a-d). O(2)-Acetoxymethyl-1-(N-ethyl-N-methylamino)diazen-1-ium-1,2-diolate (E)-3-(4-methanesulfonylphenyl)-2-phenylacrylate (11a) released 83% of the theoretical maximal release of 2 molecules of (*)NO/molecule of the parent hybrid ester prodrug upon incubation with rat serum. Hybrid ester anti-inflammatory/(*)NO donor prodrugs offer a potential drug design concept targeted toward the development of anti-inflammatory drugs that are devoid of adverse ulcerogenic and/or cardiovascular effects.  相似文献   

10.
Spectrofluorometric studies of the lipid probe, nile red   总被引:18,自引:0,他引:18  
We found that the dye nile red, 9-diethylamino-5H-benzo[alpha]phenoxazine-5-one, can be applied as a fluorescent vital stain for the detection of intracellular lipid droplets by fluorescence microscopy and flow cytofluorometry (J. Cell. Biol. 1985. 100: 965-973). To understand the selectivity of the staining, we examined the fluorescence properties of nile red in the presence of organic solvents and model lipid systems. Nile red was found to be both very soluble and strongly fluorescent in organic solvents. The excitation and emission spectra of nile red shifted to shorter wavelengths with decreasing solvent polarity. However, the fluorescence of nile red was quenched in aqueous medium. Nile red was observed to fluoresce intensely in the presence of aqueous suspensions of phosphatidylcholine vesicles (excitation maximum: 549 nm; emission maximum: 628 nm). When neutral lipids such as triacylglycerols or cholesteryl esters were incorporated with phosphatidylcholine to form microemulsions, nile red fluorescence emission maxima shifted to shorter wavelengths. Serum lipoproteins also induced nile red fluorescence and produced spectral blue shifts. Nile red fluorescence was not observed in the presence of either immunoglobulin G or gelatin. These results demonstrate that nile red fluorescence accompanied by a spectral blue shift reflects the presence of nile red in a hydrophobic lipid environment and account for the selective detection of neutral lipid by the dye. Nile red thus serves as an excellent fluorescent lipid probe.  相似文献   

11.
A new degradable hydroxamate linkage for pH-controlled drug delivery   总被引:1,自引:0,他引:1  
A new drug delivery system based on a hydrodegradable hydroxamate linkage was evaluated. The carrier support system was poly(N-hydroxyacrylamide), which was synthesized via free radical polymerization of acryloyl chloride in 1,4-dioxane, initiated with 2,2'-azobisisobutyronitrile. The poly(acryloyl chloride) was modified in two steps. First, N-hydroxysuccinimide was added to give the imide ester of poly(acryloyl). In the second step, the imide ester of poly(acryloyl) was reacted with either hydroxylamine or N-methylhydroxylamine to give the corresponding hydroxamic acid. The hydroxamide functionality was then used to link the model drug ketoprofen. All products and intermediates were characterized by elemental analysis and FTIR and 1H NMR spectra. In vitro drug release was performed under specific conditions to elucidate the influence of the pH, polymer microstructure, and temperature on the hydrolysis rate of the amido-ester bond that linked the drug to the macromolecule. The drug release rate from N-methylhydroxamic acid polymers was faster than from hydroxamic acid polymers. All polymers showed higher rates of drug release at higher pH values (9.0 > 7.4 > 2.0) and at higher temperatures (37 degrees C > 20 degrees C).  相似文献   

12.
A method for increasing the mass recovery of therapeutic proteins produced by E. coli using liquid chromatography was investigated. Recombinant human interferon-gamma (rhIFN-gamma) produced by E. coli was selected as a model therapeutic protein, and hydrophobic interaction chromatography (HIC) was performed as a model for liquid chromatography. Using seven types of stationary phase hydrophobic interaction chromatography (STHIC) with different end groups, the effect of the stationary phase on the mass recovery during protein folding by liquid chromatography (LC) and the causes of mass loss of rhIFN-gamma during its folding with simultaneous purification were investigated. Also strategies for increasing mass recovery are proposed. The results demonstrate that the mass recovery of rhIFN-gamma increases with the decreasing hydrophobicity for six STHIC with end groups of PEG-200, PEG-400, PEG-600, PEG-1000, furfural, and phenyl, except for PEG-1000. However, for oxethyl and PEG-600, even though the same diol end group is bonded to PEG-600, so long as the PEG-600 is modified by acetyl chloride, it can effectively enhance the mass and bioactivity recovery of rhIFN-gamma compared to the PEG-600 column. The effect of sample size including both mass and volume on the mass recovery of the rhIFN-gamma was also investigated. Last, redissolving the target protein that has irreversibly adsorbed to the stationary phase and re-injecting it onto the column is an approach for increasing mass recovery.  相似文献   

13.
Jin Y  Song L  Su Y  Zhu L  Pang Y  Qiu F  Tong G  Yan D  Zhu B  Zhu X 《Biomacromolecules》2011,12(10):3460-3468
Oxime bonds dispersed in the backbones of the synthetic polymers, while young in the current spectrum of the biomedical application, are rapidly extending into their own niche. In the present work, oxime linkages were confirmed to be a robust tool for the design of pH-sensitive polymeric drug delivery systems. The triblock copolymer (PEG-OPCL-PEG) consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic oxime-tethered polycaprolactone (OPCL) was successfully prepared by aminooxy terminals of OPCL ligating with aldehyde-terminated PEG (PEG-CHO). Owing to its amphiphilic architecture, PEG-OPCL-PEG self-assembled into the micelles in aqueous media, validated by the measurement of critical micelle concentration (CMC). The MTT assay showed that PEG-OPCL-PEG exhibited low cytotoxicity against NIH/3T3 normal cells. Doxorubicin (DOX) as a model drug was encapsulated into the PEG-OPCL-PEG micelles. Drug release study revealed that the DOX release from micelles was significantly accelerated at mildly acid pH of 5.0 compared to physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery systems with oxime linkages. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells. MTT assay against HeLa cancer cells showed DOX-loaded PEG-OPCL-PEG micelles had a high anticancer efficacy. All of these results demonstrate that these polymeric micelles self-assembled from oxime-tethered block copolymers are promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

14.
A new class of hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrugs (NONO-coxibs 12a-b) wherein an O(2)-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (11, O(2)-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the bromomethyl group of 5-(4-bromomethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (9a), and its methanesulfonyl analog (9b), were synthesized. The diazen-1-ium-1,2-diolate compounds 12a-b released a low amount of NO upon incubation with phosphate buffer (PBS) at pH 7.4 (6.1-8.2% range). In comparison, the percentage NO released was significantly higher (76-77% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) when the diazen-1-ium-1,2-diolate ester prodrugs 12a-b were incubated in the presence of rat serum. These incubation studies suggest that both NO and the anti-inflammatory 5-(4-hydroxymethylphenyl)-1-(4-aminosulfonylphenyl)-3-trifluoromethyl-1H-pyrazole (10a), and its methanesulfonyl analog (10b), would be released from the parent NONO-coxib 12a or 12b upon in vivo cleavage by non-specific serum esterases. The hydroxymethyl compounds 10a-b were weak inhibitors of the cyclooxygenase-1 (COX-1) and COX-2 isozymes (IC(50)=3.7-10.5 microM range). However, the hydroxymethyl compounds 10a-b and the parent NONO-coxibs 12a-b exhibited good AI activities (ED(50)=76.7-111.6 micromol/kg po range) that were greater than that exhibited by the reference drugs aspirin (ED(50)=710 micromol/kg po) and ibuprofen (ED(50)=327 micromol/kg po), but less than that of celecoxib (ED(50)=30.9mumol/kg po). These studies indicate hybrid ester AI/NO-donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects.  相似文献   

15.
A fluorogenic substrate for exo-β-N-acetylmuramidase from Bacillus subtilis B was synthesized. 4-Methyl-2-oxo-1,2-benzopyran-7-yl 2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranoside was prepared from 4-methyl-2-oxo-1,2-benzopyran-7-yl 2-acetamido-2-deoxy-β-d-glucopyranoside, condensed with dl-2-chloropropionic acid, the benzylidene residue removed by acetolysis and the 4-methyl-2-oxo-1,2-benzopyran-7-yl 2-amino-3-O-(d-1-carboxyethyl)-2-deoxy-β-d-glucopyranoside purified by chromatography on silica gel and Sephadex G-10 and by high-voltage paper electrophoresis. The identity of the product was confirmed by pmr studies, acid hydrolysis followed by chromatography of the products, and enzymic digestion.  相似文献   

16.
In this report, we present an acid-sensitive drug delivery vehicle, termed polyketal nanoparticles, which are designed to target therapeutics to the acidic environments of tumors, inflammatory tissues, and phagosomes. The polyketal nanoparticles are formulated from poly(1,4-phenyleneacetone dimethylene ketal) (PPADK), a new hydrophobic polymer which contains ketal linkages in its backbone. The polyketal nanoparticles undergo acid-catalyzed hydrolysis into low molecular weight hydrophilic compounds and should therefore release encapsulated therapeutics at an accelerated rate in acidic environments. Importantly, the polyketal nanoparticles do not generate acidic degradation products after hydrolysis, as with polyester-based biomaterials. Dexamethasone-loaded nanoparticles, 200-600 nm in diameter, were fabricated with PPADK via an emulsion procedure using chloroform and water. The hydrolysis half-life of PPADK was measured to be 102 h at pH 7.4 and 35 h at pH 5.0. PPADK was synthesized by a new polymerization strategy based on the acetal exchange reaction. This new delivery system should find numerous applications in the field of drug delivery because of its ease of synthesis and excellent degradation properties.  相似文献   

17.
研究一种快速准确测定微藻中中性脂的方法。湛江等鞭金藻是一种中性脂含量高且具有开发潜力的能源微藻。以湛江等鞭金藻为实验对象,首先优化尼罗红染色的条件。当二甲基亚砜体积分数为2.0%、尼罗红质量浓度为1.00μg/m L、细胞密度为1.0×106个/m L、激发波长为480 nm、检测波长为580 nm时,优化的染色时间为10min。其次测定了背景荧光对检测的影响。结果表明,在不同细胞状态下,背景荧光强度大约是微藻内荧光强度的20%左右,可以忽略。最后比较了尼罗红荧光法和重量法。结果表明,荧光强度与中性脂含量的相关系数R2=0.946 8,虽然两者相关性并不十分高,但作为一种快速测定微藻中中性脂的方法,尼罗红荧光法依然是研究微藻培养过程中中性脂含量变化的有效方法。  相似文献   

18.
Novel amphiphilic star-shaped polymers showing pH-sensitivity were synthesized by atom transfer radical polymerization. These new polymers present a core-shell structure similar to polymeric micelles, but are inherently stable to dilution and are referred to as unimolecular polymeric micelles. A four-armed multifunctional initiator was used for the sequential polymerization of hydrophobic ethyl methacrylate and tert-butyl methacrylate and hydrophilic poly(ethylene glycol)methacrylate. Polymers of molecular weight ranging from 9000 to 20,000 were obtained. Results of dynamic light scattering showed micelle size ranging from 11 to 40 nm. Unimolecular micelles were also analyzed by static light scattering in aqueous environment. Star-shaped polymers which presented the highest molar ratio of hydrophobic monomers tended to form high molecular weight aggregates in water. Hydrolysis of the tert-butyl methacrylate units permitted the introduction of ionizable methacrylic acid functions. Size distributions were bimodal at both acidic and basic pH. Since, the polymers were designed as potential delivery systems for the oral administration of hydrophobic drugs, they were titrated to evaluate the degree of ionization as a function of pH. In the stomach, the carboxylic functions are expected to be fully protonated. However, in the intestine, the micelles will be more than 40% ionized. Fluorescence studies were conducted in order to evaluate the polarity of the micellar core. Results showed an increase in polarity with pH due to the ionization of the acid functions present along the polymer chains. The pH rise was associated with an increase in the in vitro release rate of progesterone, which was used as hydrophobic drug model.  相似文献   

19.
Lin S  Du F  Wang Y  Ji S  Liang D  Yu L  Li Z 《Biomacromolecules》2008,9(1):109-115
Intelligent gene delivery systems based on physiologically triggered reversible shielding technology have evinced enormous interest due to their potential in vivo applications. In the present work, an acid-labile block copolymer consisting of poly(ethylene glycol) and poly(2-(dimethylamino)ethyl methacrylate) segments connected through a cyclic ortho ester linkage (PEG- a-PDMAEMA) was synthesized by atom transfer radical polymerization of DMAEMA using a PEG macroinitiator with an acid-cleavable end group. PEG- a-PDMAEMA condensed with plasmid DNA formed polyplex nanoparticles with an acid-triggered reversible PEG shield. The pH-dependent shielding/deshielding effect of PEG chains on the polyplex particles were evaluated by zeta potential and size measurements. At pH 7.4, polyplexes generated from PEG- a-PDMAEMA exhibited smaller particle size, lower surface charge, reduced interaction with erythrocytes, and less cytotoxicity compared to PDMAEMA-derived polyplexes. At pH 5.0, zeta potential of polyplexes formed from PEG- a-PDMAEMA increased, leveled up after 2 h of incubation and gradual aggregation occurred in the presence of bovine serum albumin (BSA). In contrast, the stably shielded polyplexes formed by DNA and an acid-stable block copolymer, PEG- b-PDMAEMA, did not change in size and zeta potential in 6 h. In vitro transfection efficiency of the acid-labile copolymer greatly increased after 6 h incubation at pH 5.0, approaching the same level of PDMAEMA, whereas there was only slight increase in efficiency for the stable copolymer, PEG- b-PDMAEMA.  相似文献   

20.
Entacapone was reacted with phosphorous oxychloride in dry pyridine to yield a phosphate ester. The phosphate promoiety increased aqueous solubility of the parent drug by more than 1700- and 20-fold at pH 1.2 and 7.4, respectively. The phosphate ester provides adequate stability (t(1/2) = 2227 h; pH 7.4) towards chemical hydrolysis, and allowed for release of the parent drug via enzymatic hydrolysis in liver homogenate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号