首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gram-positive, mesophilic bacterium Paenibacillus alvei CCM 2051T possesses a two-dimensional crystalline protein surface layer (S-layer) with oblique lattice symmetry composed of a single type of O-glycoprotein species. Herein, we describe a strategy for nanopatterned in vivo cell surface co-display of peptide and glycan epitopes based on this S-layer glycoprotein self-assembly system. The open reading frame of the corresponding structural gene spaA codes for a protein of 983 amino acids, including a signal peptide of 24 amino acids. The mature S-layer protein has a theoretical molecular mass of 105.95 kDa and a calculated pI of 5.83. It contains three S-layer homology domains at the N-terminus that are involved in anchoring of the glycoprotein via a non-classical, pyruvylated secondary cell wall polymer to the peptidoglycan layer of the cell wall. For this polymer, several putative biosynthesis enzymes were identified upstream of the spaA gene. For in vivo cell surface display, the hexahistidine tag and the enhanced green fluorescent protein, respectively, were translationally fused to the C-terminus of SpaA. Immunoblot analysis, immunofluorescence staining, and fluorescence microscopy revealed that the fused epitopes were efficiently expressed and successfully displayed via the S-layer glycoprotein matrix on the surface of P. alvei CCM 2051T cells. In contrast, exclusively non-glycosylated chimeric SpaA proteins were displayed, when the S-layer of the glycosylation-deficient wsfP mutant was used as a display matrix.  相似文献   

2.
Three Yarrowia lipolytica cell wall proteins (YlPir, YlCWP1 and YlCBM) were evaluated for their ability to display the xylanase TxXYN from Thermobacillus xylanilyticus on the cell surface of Y. lipolytica. The fusion proteins were produced in Y. lipolytica JMY1212, a strain engineered for mono-copy chromosomal insertion, and enabling accurate comparison of anchoring systems. The construction using YlPir enabled cell bound xylanase activity to be maximised (71.6 U/g). Although 48% of the activity was released in the supernatant, probably due to proteolysis at the fusion zone, this system is three times more efficient for the anchoring of TxXYN than the YlCWP1 system formerly developed for Y. lipolytica. As far as we know it represents the best displayed xylanase activity ever published. It could be an attractive alternative anchoring system to display enzymes in Y. lipolytica.  相似文献   

3.

Background

Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB). In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine.

Results

Multiple sequence alignment revealed that the C-terminal region (LcsB) of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP) or beta-galactosidase (Gal) was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor.

Conclusion

The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological application.
  相似文献   

4.
A new approach is described to quantify the number of enzyme molecules, such as Candia antarctica lipase B, that are displayed on the cell surface of Pichia pastoris. Enhanced green fluorescent protein (EGFP) and Candida antarctica lipase B (CALB) were fused and displayed on the surface of P. pastoris by linking to the anchor flocculation functional domain of FLO1p from Saccharomyces cerevisiae. Confocal laser scanning microscopy, flow cytometry, and fluorescence spectrophotometry were used to monitor the fluorescence intensity of fused EGFP. Combined with the corresponding protein concentration detected in the medium, a standard curve describing the relationship between the fusion protein concentration and fluorescence intensity were obtained and could be used to number CALB displayed on the cell surface. The results showed that approx. 104 molecules of CALB molecules were immobilized on the single P. pastoris cell wall based on FS anchor system.  相似文献   

5.
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain–heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.  相似文献   

6.
We have created novel HER2-overexpressing human ovarian adenocarcinoma cell line stably transfected with far-red fluorescent protein TurboFP635. Growth characteristics, adhesion capacity and morphology of the cells do not differ from that of parental cell line. The obtained cell line (SKOV-kat) was confirmed to have high level of expression of the tumor marker HER2 comparable to that of initial cell line SKOV-3. The SKOV-kat cell line is designed for further establishment of experimental fluorescent models of HER2-overexpressing human ovarian cancer that make it possible to optimize and reduce the cost of preclinical study of agents for treatment of this disease.  相似文献   

7.
The C-terminus of the putative cell surface protein CspI which contains one putative LPxTG motif region and a signal peptides fragment were amplified from L. plantarum CICC6024, and the green fluorescent protein gene gfp was amplified from the plasmid pACGFP. The three genes were ligated and the fusion gene was named SgfpL. The fusion gene SgfpL was then cloned into shuttle expression vector pMG36e and transformed into L. plantarum. SDS-PAGE identified that the fusion protein was expressed and the band of fusion protein was observed at the predicated molecular size. Fluorescence assay, western blot against GFP antibody, protease accessibility and SDS sensitivity assays were performed to determine that the GFP was successfully displayed on the surfaces of L. plantarum cells and the maximum display capacity of the GFP fusion protein was ca. 65 μg?ml?1. The fermentation condition experiments determined that the amounts of GFP fusion protein were increased at a higher temperature and reached the peak at 2.5 h. Then, the β-galactosidase from Bifidobacterium bifidum was functionally displayed on the surface of L. plantarum cells via CspI to demonstrate the applicability of the CspI-mediated surface display system.  相似文献   

8.
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein.  相似文献   

9.
A continuous monitoring of the whole tumor burden of individuals in orthotopic tumor models is a desirable aim and requires non-invasive imaging methods. Here we investigated whether quantification of a xenograft tumor intrinsic fluorescence signal can be used to evaluate tumor growth and response to chemotherapy. Stably fluorescence protein (FP) expressing cell clones of colorectal carcinoma and germ cell tumor lines were generated by lentiviral transduction using the FPs eGFP, dsRed2, TurboFP635, and mPlum. Applying subcutaneous tumor models in different experimental designs, specific correlations between measured total fluorescence intensity (FI) and the tumor volume (V) could be established. The accuracy of correlation of FI and V varied depending on the cell model used. The application of deep-red FP expressing xenografts (TurboFP635, mPlum) was observed to result in improved correlations. This was also reflected by the results of a performed error analysis. In a model of visceral growing mPlum tumors, measurements of FI could be used to follow growth and response to chemotherapy. However, in some cases final necropsy revealed the existence of additional, deeper located tumors that had not been detected in vivo by their mPlum signal. Consistently, only the weights of the tumors that were detected in vivo based on their mPlum signal correlated with FI. In conclusion, as long as tumors are visualized by their fluorescence signal the FI can be used to evaluate tumor burden. Deep-red FPs are more suitable for in vivo applications as compared to eGFP and dsRed2.  相似文献   

10.
Aims: To establish a novel cell surface display system that would enable the display of target proteins on Lactobacillus plantarum. Methods and Results: Blast P analysis of the amino acids sequence data revealed that the N‐terminus of the putative muropeptidase MurO from L. plantarum contained two putative lysin motif (LysM) repeat regions, implying that the MurO was involved in bacterial cell wall binding. To investigate the potential of MurO for surface display, green fluorescent protein (GFP) was fused to MurO at its C‐terminus and the resulting fusion protein was expressed in Escherichia coli. After being mixed with L. plantarum cells in vitro, GFP was successfully displayed on the surfaces of L. plantarum cells. Increases in the fluorescence intensities of chemically pretreated L. plantarum cells compared to those of nonpretreated cells suggested that the peptidoglycan was the binding ligand for MurO. SDS sensitivity assay showed that the GFP fluorescence intensity was reduced after being treated with SDS. To demonstrate the applicability of the MurO‐mediated surface display system, β‐galactosidase from Bifidobacterium bifidium, in place of GFP, was functionally displayed on the surface of L. plantarum cells via MurO. Conclusions: The MurO was a novel anchor protein for constructing a surface display system for L. plantarum. Significance and Impact of Study: The success in surface display of GFP and β‐galactosidase opened up the feasibility of employing the cell wall anchor of MurO for surface display in L. plantarum.  相似文献   

11.
Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast,Saccharomyces cerevisiae by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) ofAspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast α-agglutinin, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced intoS. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.  相似文献   

12.
Wang Q  Li L  Chen M  Qi Q  Wang PG 《Current microbiology》2008,56(4):352-357
A novel system based on Pir1 from Saccharomyces cerevisiae was developed for cell-surface display of heterologous proteins in Pichia pastoris with the alpha-factor secretion signal sequence. As a model protein, enhanced green fluorescence protein (EGFP) was fused to the N-terminal of the mature peptide of Pir1 (Pir1-a). The expression of fusion protein EGFP-Pir1-a was irregular throughout the P. pastoris cell surface per detection by confocal laser scanning microscopy. A truncated sequence containing only the internal repetitive sequences of Pir1-a (Pir1-b) was used as a new anchor protein in further study. The fusion protein EGFP-Pir1-b was expressed uniformly on the cell surface. The fluorescence intensity of the whole yeast was measured by spectrofluorometer. Western blot confirmed that the fusion proteins were released from cell walls after mild alkaline treatment. The results indicate that a Pir1-based system can express proteins on the surface of P. pastoris and that the fusion proteins do not affect the manner in which Pir1 attaches to the cell wall. The repetitive sequences of Pir1 are required for cell wall retention, and the C-terminal sequence contributes to the irregular distribution of fusion proteins in P. pastoris.  相似文献   

13.
In order to develop an affinity ligand for site-directed immobilization of target proteins on polystyrene (PS) surface, a linear 12-mer peptide phage display random library was screened. Phage clones that specifically bound to PS plate were sequenced after three rounds of biopanning. The obtained DNA sequences revealed that there were several aromatic and basic amino acid residues, which may be critical to binding. One of the selected dodecapeptides, named Lig1 (FKFWLYEHVIRG), was genetically fused to the N/C-terminus of recombinant antigen ENV which could be recognized by specific antibodies against human immunodeficiency virus type 1 (HIV-1), to investigate its performance as an affinity ligand. The ligand-fused ENVs overexpressed in Escherichia coli were compared to the original one in terms of the immobilization characteristics on PS plate in enzyme-linked immunosorbent assay (ELISA). The results indicated that the ligand-fused proteins showed a considerably improved affinity to PS surface, and were preferentially adsorbed on PS plate suffering only scarcely from interference by coexisting protein molecules. Anti-HIV-1 ELISA system, which employed Lig1-ENV (Lig1 fused to ENV N-terminus) as immobilization antigen also exhibited sufficiently high sensitivity and specificity in serodiagnosis tests.  相似文献   

14.
A Pichia pastoris cell-surface display system was constructed using the Sed1 anchor system that has been developed in Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was used as the model protein and was fused to an anchor that consisted of 338 amino acids of Sed1. The resulting fusion protein CALBSed1 was expressed under the control of the alcohol oxidase 1 promoter (pAOX1). Immunofluorescence microscopy of immunolabeled Pichia pastoris revealed that CALB was displayed on the cell surface. Western blot analysis showed that the fusion protein CALBSed1 was attached covalently to the cell wall and was highly glycosylated. The hydrolytic activity of the displayed CALB was more than 220 U/g dry cells after 120 h of culture. The displayed protein also exhibited a higher degree of thermostability than free CALB.  相似文献   

15.
To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3′-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94?% CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64?% CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170?% hydrolytic activity and 155?% synthetic activity compared with strain KCSe1 as well as 144?% hydrolytic activity and 121?% synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124?% hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.  相似文献   

16.
We tried genetically to immobilize cellulase protein on the cell surface of the yeast Saccharomyces cerevisiae in its active form. A cDNA encoding FI-carboxymethylcellulase (CMCase) of the fungus Aspergillus aculeatus, with its secretion signal peptide, was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast α-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The plasmid constructed containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The CMCase activity was detected in the cell pellet fraction. The CMCase protein was solubilized from the cell wall fraction by glucanase treatment but not by sodium dodecyl sulphate treatment, indicating the covalent binding of the fusion protein to the cell wall. The appearance of the fused protein on the cell surface was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. These results proved that the CMCase was anchored on the cell wall in its active form. Received: 19 March 1997 / Received revision: 19 May 1997 / Accepted: 1 June 1997  相似文献   

17.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

18.
We constructed a novel cell-surface display system, using as a new type of cell-wall anchor 3,297 or 4,341 bp of the 3′ region of the FLO1 gene (FS or FL gene, respectively), which encodes the flocculation functional domain of Flo1p. In this system, the N terminus of the target protein was fused to the FS or FL protein and the fusion proteins were expressed under the control of the inducible promoter UPR-ICL (5′ upstream region of the isocitrate lyase of Candida tropicalis). Using this new system, recombinant lipase with a pro sequence from Rhizopus oryzae (rProROL), which has its active site near the C terminus, was displayed on the cell surface. Cell-surface display of the FSProROL and FLProROL fusion proteins was confirmed by immunofluorescence microscopy and immunoblotting. Lipase activity reached 145 IU/liter (61.3 IU/g [dry cell weight]) on the surface of the yeast cells, which successfully catalyzed the methanolysis reaction. Using these whole-cell biocatalysts, methylesters synthesized from triglyceride and methanol reached 78.3% after 72 h of reaction. To our knowledge, this is the first example of cell-surface display of lipase with high activity. Interestingly, the yeast cells displaying the FLProROL protein showed strong flocculation, even though the glycosylphosphatidylinositol anchor attachment signal and cell-membrane-anchoring region of Flo1p had been deleted from this gene. The cell-surface display system based on FL thus endows the yeast strain with both novel enzyme display and strong flocculation ability.  相似文献   

19.
Phosphoinositides (PIs) play important roles in signal transduction pathways and the regulation of cytoskeleton and membrane functions in eukaryotes. Subcellular localization of individual PI derivative is successfully visualized in yeast, animal, and green plant cells using PI derivative-specific pleckstrin homology (PH) domains fused with a variety of fluorescent proteins; however, expression of fluorescent proteins has not yet been reported in any red algal cells. In the present study, we developed the system to visualize these PIs using human PH domains fused with a humanized cyan fluorescent protein (AmCFP) in the red alga Porphyra yezoensis. Plasma membrane localization of AmCFP fused with the PH domain from phospholipase Cδ1 and Akt1, but not Bruton’s tyrosine kinase, was observed in cell wall-free monospores, demonstrating the presence of phosphatidylinositol-4,5-bisphosphate and phosphatidylinositol-3,4-bisphosphate in P. yezoensis cells. This is the first report of the successful expression of fluorescent protein and the monitoring of PI derivatives in red algal cells. Our system, based on transient expression of AmCFP, could be applicable for the analysis of subcellular localization of other proteins in P. yezoensis and other red algal cells.  相似文献   

20.
An engineered yeast with emission of fluorescence from the cell surface was constructed. Cell surface engineering was applied to display a visible reporter molecule, green fluorescent protein (GFP). A glucose-inducible promoter GAPDH as a model promoter was selected to control the expression of the reporter gene in response to environmental changes. The GFP gene was fused with the gene encoding the C-terminal half of α-agglutinin of Saccharomyces cerevisiae having a glycosylphosphatidylinositol anchor attachment signal sequence. A secretion signal sequence of the fungal glucoamylase precursor protein was connected to the N-terminal of GFP. This designed gene was integrated into the TRP1 locus of the chromosome of S. cerevisiae with homologous recombination. Fluorescence microscopy demonstrated that the transformant cells emitted green fluorescence derived from functionally expressed GFP involved in the fusion molecule. The surface display of GFP was further verified by immunofluorescence labeling with a polyclonal antibody (raised in rabbits) against GFP as the first antibody and Rhodamine Red-X-conjugated goat anti-rabbit IgG as the second antibody which cannot penetrate into the cell membrane. The display of GFP on the cell surface was confirmed using a confocal laser scanning microscope and by measuring fluorescence in each cell fraction obtained after the subcellular fractionation. As GFP was proved to be displayed as an active form on the cell surface, selection of promoters will endow yeast cells with abilities to respond to changes in environmental conditions, including nutrient concentrations in the media, through the emission of fluorescence. Received: 23 August 1999 / Received revision: 16 November 1999 / Accepted: 29 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号