首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ultrasound sonication has been utilized to produce fragmentation of chitosan polymer and hence increase the chitosan surface area, making it more accessible to interactions with proteins. In this context, we have investigated the catalytic properties of lipases from different sources immobilized onto ultrasound-treated chitosan (ChiS) pre-activated with glutaraldehyde (ChiS-G). Atomic force microscopy indicated that ChiS-G displays a more cohesive frame without the presence of sheared/fragmented structures when compared with ChiS, which might be attributed to the cross-linking of the polysaccharide chains. The immobilization efficiency onto ChiS-G and ChiS were remarkably higher than using conventional beads. In comparison with the free enzymes, lipases immobilized onto ChiS show a slight increase of apparent Km and decrease of apparent Vmax. On the other hand, immobilization onto ChiS-G resulted in an increase of Vmax, even though a slight increase of Km was also observed. These data suggest that the activation of chitosan with glutaraldehyde has beneficial effects on the activity of the immobilized lipases. In addition, the immobilization of the lipases onto ChiS-G displayed the best reusability results: enzymes retained more than 50% of its initial activity after four reuses, which might be attributed to the covalent attachment of enzyme to activated chitosan. Overall, our findings demonstrate that the immobilization of lipases onto ultrasound-treated chitosan supports is an effective and low-cost procedure for the generation of active immobilized lipase systems, being an interesting alternative to conventional chitosan beads.  相似文献   

2.
The nitrile hydratase isolated from Rhodococcus ruber strain gt1, displaying a high nitrile hydratase activity, was immobilized on unmodified aluminum oxides and carbon-containing adsorbents, including the carbon support Sibunit. The activity and operational stability of the immobilized nitrile hydratase were studied in the reaction of acrylonitrile transformation into acrylamide. It was demonstrated that an increase in the carbon content in the support led to an increase in the amount of adsorbed enzyme and, concurrently, to a decrease in its activity. The nitrile hydratase immobilized on Sibunit and carbon-containing aluminum α-oxide having a “crust” structure displayed the highest operational stability in acrylonitrile hydration. It was shown that the thermostability of adsorbed nitrile hydratase increased by one order of magnitude.  相似文献   

3.
Molecular characterisation of a novel thermophilic nitrile hydratase   总被引:2,自引:0,他引:2  
The thermophilic soil isolate, Bacillus pallidus Dac521, expresses a constitutive nitrile hydratase. The purified enzyme was found to be a 110 kDa tetramer composed of two alpha and two beta subunits with molecular masses of 27 kDa and 29 kDa, respectively. The enzyme electrophoresed as a single protein band on native PAGE but two protein bands with isoelectric points of 4.7 and 5.5 on isoelectric focusing suggested the presence of isozymes. The purified enzyme was moderately thermostable up to 55 degrees C and the enzyme activity was stable over a broad pH range. Comparisons of the N-terminal amino acid sequences of the nitrile hydratase subunits with those of other nitrile hydratases showed up to 90% identity for the beta subunit sequence but no significant identity for the alpha subunit. The enzyme hydrolysed a narrow range of aliphatic substrates and did not hydrolyse any of the cyclic, hydroxy-, di- or aromatic nitriles tested. The activity was irreversibly inhibited by the aromatic nitrile, benzonitrile. The kinetic constants for acetonitrile, acrylonitrile and propionitrile compared favourably with those of mesophilic nitrile hydratases.  相似文献   

4.
Nitrile hydratases (NHases) have an unusual iron or cobalt catalytic center with two oxidized cysteine ligands, cysteine-sulfinic acid and cysteine-sulfenic acid, catalyzing the hydration of nitriles to amides. Recently, we found that the NHase of Rhodococcus erythropolis N771 exhibited an additional catalytic activity, converting tert-butylisonitrile (tBuNC) to tert-butylamine. Taking advantage of the slow reactivity of tBuNC and the photoreactivity of nitrosylated NHase, we present the first structural evidence for the catalytic mechanism of NHase with time-resolved x-ray crystallography. By monitoring the reaction with attenuated total reflectance-Fourier transform infrared spectroscopy, the product from the isonitrile carbon was identified as a CO molecule. Crystals of nitrosylated inactive NHase were soaked with tBuNC. The catalytic reaction was initiated by photo-induced denitrosylation and stopped by flash cooling. tBuNC was first trapped at the hydrophobic pocket above the iron center and then coordinated to the iron ion at 120 min. At 440 min, the electron density of tBuNC was significantly altered, and a new electron density was observed near the isonitrile carbon as well as the sulfenate oxygen of alphaCys114. These results demonstrate that the substrate was coordinated to the iron and then attacked by a solvent molecule activated by alphaCys114-SOH.  相似文献   

5.
The nitrile hydratase (NHase) from Rhodococcus sp. N-771 is a photoreactive enzyme that is inactivated on nitrosylation of the non-heme iron center and activated on photo-dissociation of nitric oxide (NO). The nitrile hydratase operon consists of six genes encoding NHase regulator 2, NHase regulator 1, amidase, NHase alpha subunit, NHase beta subunit and NHase activator. We overproduced the NHase in Escherichia coli using a T7 expression system. The NHase was functionally expressed in E. coli only when the NHase activator encoded downstream of the beta subunit gene was co-expressed and the transformant was grown at 30 degrees C or less. A ligand cysteine, alphaCys112, of the recombinant NHase was also post-translationally modified to a cysteine-sulfinic acid similar to for the native NHase. Although another modification of alphaCys114 could not be identified because of the instability under acidic conditions, the recombinant NHase could be reversibly inactivated by nitric oxide.  相似文献   

6.
Purification of inactivated photoresponsive nitrile hydratase   总被引:2,自引:0,他引:2  
Photoresponsive nitrile hydratase from Rhodococcus sp. N-771 was purified in its inactivated form. The enzyme had a molecular weight of approximately 60 kDa and consisted of 2 subunits each having molecular weight of 27.5 and 28 kDa. The enzyme also contained 2 iron atoms/enzyme as a cofactor. The enzyme was more stable in its inactivated form, rather than the activated during storage in the dark. The enzyme was most stable in the temperature region of 0-35 degrees C, and lost its activity above 40 degrees C. The enzyme was most stable in the pH region of 6-8. The optimum temperature and pH for the enzyme activity was 30 degrees C and 7.8, respectively. The enzyme showed wide substrate specificity, and most of the metal ions did not affect enzyme activity significantly. The absorption spectrum revealed the presence of some cofactor which changed form after photoirradiation.  相似文献   

7.
The crystal structure of cobalt-containing nitrile hydratase from Pseudonocardia thermophila JCM 3095 at 1.8 A resolution revealed the structure of the noncorrin cobalt at the catalytic center. Two cysteine residues (alphaCys(111) and alphaCys(113)) coordinated to the cobalt were posttranslationally modified to cysteine-sulfinic acid and to cysteine-sulfenic acid, respectively, like in iron-containing nitrile hydratase. A tryptophan residue (betaTrp(72)), which may be involved in substrate binding, replaced the tyrosine residue of iron-containing nitrile hydratase. The difference seems to be responsible for the preference for aromatic nitriles rather than aliphatic ones of cobalt-containing nitrile hydratase.  相似文献   

8.
The crystal structure of the nitrile hydratase (NHase) from Bacillus smithii SC-J05-1 was determined. Our analysis of the structure shows that some residues that seem to be responsible for substrate recognition are different from those of other NHases. In particular, the Phe52 in the beta subunit of NHase from B. smithii covers the metal center partially like a small lid and narrows the active site cleft. It is well known that the NHase from B. smithii especially prefers aliphatic nitriles for its substrate rather than aromatic ones, and we can now infer that the Phe52 residue may play a key role in the substrate specificity for this enzyme. This finding leads us to suggest that substitution of these residues may alter the substrate specificity of the enzyme.  相似文献   

9.
Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB = 5,5′-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the APTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability.  相似文献   

10.
Rhodococcus pyridinovorans MW3 was isolated from an arable land of manioc from the Congo for its ability to transform acrylonitrile to acrylamide. This strain contains a cobalt nitrile hydratase (NHase) showing high sequence homology with NHases so far described. The specific NHase activity was 97 U mg(-1) dry wt. NHase production by R. pyridinovorans MW3 was urea and Co-dependent. The NHase was active for acrylamide up to 60% (w/v) indicating its potential for acrylamide production.  相似文献   

11.
Zhang  Ke  Pan  Tingze  Wang  Liuzhu  Wang  Hualei  Ren  Yuhong  Wei  Dongzhi 《Biotechnology letters》2022,44(10):1163-1173
Biotechnology Letters - We screened nitrilases with significant nitrile hydratase activity to exploit their potential in benzylic amide biosynthesis. We also investigated the factors affecting...  相似文献   

12.
Urocanate hydratase (4-imidazolone-5-propionate hydro-lyase, EC 4.2.1.49) isolated from Pseudomonas putida contains covalently bound alpha-ketobutyrate as its cofactor. In the process of examining the mechanism by which alpha-ketobutyrate serves in this capacity, various thermodynamic parameters and temperature effects on urocanate hydratase activity were determined. As the equilibrium constant at 15 degrees C for imidazooone propionate formation from urocanate is approximately 69, regardless of whether urocanic acid or chemically synthesized imidazolone propionate is used as the initial substrate, it is concluded that the reaction is freely reversible. DeltaG degrees ', deltaH degrees ' and deltaS degrees ' were --2.5 kcal/mole, +5.2 kcal/mole and +26 cal/deg mole, respectively. Measurement of first-order reaction rates at various temperatures, in order to calculate the Arrhenius activation energy, showed a sharp break in the Arrhenius plot at 29 degrees C. Further examination of this phenomenon by determining s20,w values of urocanate hydratase as a function of temperature revealed a dramatic change at 31 degrees C. Since the enzyme in both experiments reverts to its original state when the temperature is lowered back below the transition point, it is proposed that urocanate hydratase undergoes a reversible conformational change or partial dissociation which affects its catalytic properties in the range of 29--31 degrees C.  相似文献   

13.
Biocatalytic transformations converting aromatic and arylaliphatic nitriles into the analogous related amide or acid were investigated. These studies included synthesis of the -substituted nitrile 3-hydroxy-3-phenylpropionitrile, subsequent enrichment and isolation on this substrate of nitrile-degrading microorganisms from the environment, and a comparative study of enzymatic reactions of nitriles by resting cell cultures and enzymes. Each biocatalyst exhibited a distinctive substrate selectivity profile, generally related to the length of the aliphatic chain of the arylaliphatic nitrile and the position of substituents on the aromatic ring or aliphatic chain. Cell-free nitrilases generally exhibited a narrower substrate range than resting whole cells of Rhodococcus strains. The Rhodococcus strains all exhibited nitrile hydratase activity and converted -hydroxy nitriles (but did not demonstrate enantioselectivity on this substrate). The biocatalysts also mediated the synthesis of a range of -hydroxy carboxylic acids or amides from aldehydes in the presence of cyanide. The use of an amidase inhibitor permits halting the nitrile hydratase/amidase reaction at the amide intermediate.  相似文献   

14.
从全省各处采集的50多份土样筛选到一株产腈水合酶能力较高的菌株E10a,该菌株产生的腈水合酶为非诱导酶,产酶条件优化实验结果表明,产酶培养基组成:麦芽糖20 g/L,酵母膏5 g/L,尿素7.5 g/L,味精0.75 g/L,K2HPO40.5 g/L,KH2PO40.5 g/L,MgSO40.5 g/L,FeSO4.7H2O 10 mg/L,CoCl210 mg/L,微量元素母液0.8 ml/L;最佳培养条件为:培养温度28℃,摇床转速150 r/min,培养基起始pH 7.0,培养时间5 d,在优化培养条件下,1 h可将1 g/L质量浓度的底物对羟基苯乙腈全部转化为对羟基苯乙酰胺。  相似文献   

15.
氰基耐受型腈水合酶是一类生物催化剂。与普通腈水合酶相比,它能够耐受体系中较高浓度的氰基而不受抑制,从而为α-羟(氨)基酰胺的工业化合成开辟了崭新途径。研究腈水合酶的氰基耐受性机理及提高其耐受能力是目前需要解决的关键问题。综述了腈水合酶受氰基抑制的机制,氰基耐受型腈水合酶的发现以及其在蛋氨酸和2-羟基异丁酰胺生物合成中的应用。同时,对今后氰基耐受型腈水合酶基础、应用研究的思路进行了探讨。  相似文献   

16.
A semi-purified nitrile hydratase from Rhodococcus erythropolis A4 was applied to biotransformations of 3-oxonitriles 1a–4a, 3-hydroxy-2-methylenenitriles 5a–7a, 4-hydroxy-2-methylenenitriles 8a–9a, 3-hydroxynitriles 10a–12a and 3-acyloxynitrile 13a into amides 1b–13b. Cross-linked enzyme aggregates (CLEAs) with nitrile hydratase and amidase activities (88% and 77% of the initial activities, respectively) were prepared from cell-free extract of this microorganism and used for nitrile hydration in presence of ammonium sulfate, which selectively inhibited amidase activity. The genes nha1 and nha2 coding for and β subunits of nitrile hydratase were cloned and sequenced.  相似文献   

17.
Lipases SP525, AK, LIP, and PS were immobilized on three kinds of mesoporous silicates (FMS, PESO, and SBA) with diameters of 27 to 92 A. The amount of lipase activity adsorbed on these supports was related to the pore size of the silicate. Enantioselectivities of immobilized lipases were similar to those of free lipases, and recycling could be done in both aqueous and organic solvents.  相似文献   

18.
Three cysteine residues, which are completely conserved among alpha-subunits in all nitrile hydratases, are thought to be the ligands of a metal ion in the catalytic center of this enzyme. These cysteine residues (i.e. alpha C102, alpha C105 and alpha C107) in the high-molecular-mass nitrile hydratase (H-NHase) of Rhodococcus rhodochrous J1 were replaced with alanine by site-directed mutagenesis using the R. rhodochrous ATCC12674 host-vector system, and the resultant transformants were investigated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for the cell-free extracts of each mutant transformant revealed that four mutant transformants (i.e. alpha C105A, alpha C107A, alpha C102A/C105A and alpha C105A/C107A) showed predominant alpha- and beta-subunit protein bands with a mobility identical to those of the native H-NHase, while three mutant transformants (i.e. alpha C102A, alpha C102A/C107A and alpha C102A/C105A/C107A) did not produce the corresponding proteins. The purified former four mutant enzymes showed neither enzymatic activity nor the maximum absorption at 410 nm which was detected in the wild type H-NHase. They also did not contain cobalt ions. Based upon these findings, these three cysteine residues were found to be essential for the active expression of H-NHase.  相似文献   

19.
Nitrile hydratases are important industrial catalysts to produce valuable amides. In this study, we describe a comprehensive and systematic approach to the development of an inducible expression system for enhanced nitrile hydratase expression in Corynebacterium glutamicum. Through promoter engineering, codon optimization and design of ribosome binding site sequences, the nitrile hydratase activity toward 3-cyanopyridine was improved from 0.33 U/mg DCW to 12.03 U/mg DCW in shake-flask culture. By introduction of the novel inducible mmp expression system, the nitrile hydratase activity was further elevated to 14.97 U/mg DCW. Finally, a high nitrile hydratase yield of 1432 U/mL was achieved in a fed-batch fermentation process and used for nicotinamide production. These results provide new insights for the development of heterologous protein expression systems in C. glutamicum.  相似文献   

20.
Kubiak K  Nowak W 《Biophysical journal》2008,94(10):3824-3838
Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, α and β. Hydrogen bonds between βArg-56 and αCys-114 sulfenic acid (αCEA114) are important to maintain the enzymatic activity. The enzyme may be inactivated by endogenous nitric oxide (NO) and activated by absorption of photons of wavelength λ < 630 nm. To explain the photosensitivity and to propose structural determinants of catalytic activity, differences in the dynamics of light-active and dark-inactive forms of NHase were investigated using molecular dynamics (MD) modeling. To this end, a new set of force field parameters for nonstandard NHase active sites have been developed. The dynamics of the photodissociated NO ligand in the enzyme channel was analyzed using the locally enhanced sampling method, as implemented in the MOIL MD package. A series of 1 ns trajectories of NHases shows that the protonation state of the active site affects the dynamics of the catalytic water and NO ligand close to the metal center. MD simulations support the catalytic mechanism in which a water molecule bound to the metal ion directly attacks the nitrile carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号