首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A plethora of bioactive plant metabolites has been explored for pharmaceutical, food chemistry and agricultural applications. The chemical synthesis of these structures is often difficult, so plants are favorably used as producers. While whole plants can serve as a source for secondary metabolites and can be also improved by metabolic engineering, more often cell or organ cultures of relevant plant species are of interest. It should be noted that only in few cases the production for commercial application in such cultures has been achieved. Their genetic manipulation is sometimes faster and the production of a specific metabolite is more reliable, because of less environmental influences. In addition, upscaling in bioreactors is nowadays possible for many of these cultures, so some are already used in industry. There are approaches to alter the profile of metabolites not only by using plant genes, but also by using bacterial genes encoding modifying enzymes. Also, strategies to cope with unwanted or even toxic compounds are available. The need for metabolic engineering of plant secondary metabolite pathways is increasing with the rising demand for (novel) compounds with new bioactive properties. Here, we give some examples of recent developments for the metabolic engineering of plants and organ cultures, which can be used in the production of metabolites with interesting properties.  相似文献   

2.
In the last years, hairy root (HR) cultures are gaining attention in the biotechnology industry. This particular plant cell culture derives from explants infected with Agrobacterium rhizogenes. They constitute a relatively new approach to in vitro plant biotechnology and modern HR cultures are far away from the valuables findings performed by Philip R. White in the 1930?s, who obtained indefinite growth of excised root tips. HR cultures are characterized by genetic and biochemical stability and high growth rate without expensive exogenous hormones source. HR cultures have allowed a deep study of plant metabolic pathways and the production of valuable secondary metabolites and enzymes, with therapeutic or industrial application. Furthermore, the potential of HR cultures is increasing continuously since different biotechnological strategies such as genetic engineering, elicitation and metabolic traps are currently being explored for discovery of new metabolites and pathways, as well as for increasing metabolites biosynthesis and/or secretion. Advances in design of proper bioreactors for HR growth are being of great interest, since scale up of metabolite production will allow the integration of this technology to industrial processes. Another application of HR cultures is related to their capabilities to biotransform and to degrade different xenobiotics. In this context, removal assays using this plant model system are useful tools for phytoremediation assays, previous to the application in the field. This review highlights the more recent application of HRs and those new patents which show their multiple utilities.  相似文献   

3.
Secondary metabolism of hairy root cultures in bioreactors   总被引:3,自引:0,他引:3  
Summary In vitro cultures are being considered as an alternative to agricultural processes for producing valuable secondary metabolites. Most efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Bioreactors used to culture hairy roots can be roughly divided into three types: liquid-phase, gas-phase, or hybrid reactors that are a combination of both. The growth and productivity of hairy root cultures are reviewed with an emphasis on successful bioreactors and important culture considerations. The latter include strain selection, production of product in relation to growth phase, media composition, the gas regime, use of elicitors, the role of light, and apparent product loss. Together with genetic engineering and process optimization, proper reactor design plays a key role in the development of successful large scale production of secondary metabolites from plant cultures.  相似文献   

4.
Alkaloids purified from plants provide many pharmacologically active compounds, including leading chemotherapy drugs. As is generally true of secondary metabolites, overall productivity is low, making commercial production expensive. Alternative production methods remain impractical, leaving the plant as the best source for these valuable chemicals. Recently, significant progress in characterizing the biosynthetic pathways leading to various alkaloids has been made, and a number of relevant genes have been cloned. Metabolic engineering employing such genes provides a promising technology for improved productivity in plant cell cultures, plant tissue cultures, or intact plants. In exploring solutions though, metabolic engineers must be careful to recognize the limitations inherent in designing plant systems.  相似文献   

5.
Withania somnifera (L.) Dunal (family: Solanaceae), commonly known as “Indian Ginseng”, is a medicinally and industrially important plant of the Indian subcontinent and other warmer parts of the world. The plant has multi-use medicinal potential and has been listed among 36 important cultivated medicinal plants of India that are in high demand for trade due to its pharmaceutical uses. The medicinal importance of this plant is mainly due to the presence of different types of steroidal lactones- withanolides in the roots and leaves. Owing to low seed viability and poor germination, the conventional propagation of W. somnifera falls short to cater its commercial demands particularly for secondary metabolite production. Therefore, there is a great need to develop different biotechnological approaches through tissue and organ culture for seasonal independent production of plants in large scale which will provide sufficient raw materials of uniform quality for pharmaceutical purposes. During past years, a number of in vitro plant regeneration protocols via organogenesis and somatic embryogenesis and in vitro conservation through synthetic seed based encapsulation technology have been developed for W. somnifera. Several attempts have also been made to standardize the protocol of secondary metabolite production via tissue/organ cultures, cell suspension cultures, and Agrobacterium rhizogenes-mediated transformed hairy root cultures. Employment of plant tissue culture based techniques would provide means for rapid propagation and conservation of this plant species and also provide scope for enhanced production of different bioactive secondary metabolites. The present review provides a comprehensive report on research activities conducted in the area of tissue culture and secondary metabolite production in W. somnifera during the past years. It also discusses the unexplored areas which might be taken into consideration for future research so that the medicinal properties and the secondary metabolites produced by this plant can be exploited further for the benefit of human health in a sustainable way.  相似文献   

6.
A dynamic model for plant cell metabolism was used as a basis for a rational analysis of plant production potential in in vitro cultures. The model was calibrated with data from 3-L bioreactor cultures. A dynamic sensitivity analysis framework was developed to analyse the response curves of secondary metabolite production to metabolic and medium perturbations. Simulation results suggest that a straightforward engineering of cell metabolism or medium composition might only have a limited effect on productivity. To circumvent the problem of the dynamic allocation of resources between growth and production pathways, the sensitivity analysis framework was used to assess the effect of stabilizing intracellular nutrient concentrations. Simulations showed that a stabilization of intracellular glucose and nitrogen reserves could lead to a 116% increase in the specific production of secondary metabolites compared with standard culture protocol. This culture strategy was implemented experimentally using a perfusion bioreactor. To stabilize intracellular concentrations, adaptive medium feeding was performed using model mass balances and estimations. This allowed for a completely automated culture, with controlled conditions and pre-defined decision making algorithm. The proposed culture strategy leads to a 73% increase in specific production and a 129% increase in total production, as compared with a standard batch culture protocol. The sensitivity analysis on a mathematical model of plant metabolism thus allowed producing new insights on the links between intracellular nutritional management and cell productivity. The experimental implementation was also a significant improvement on current plant bioprocess strategies.  相似文献   

7.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

8.

Main conclusion

Medicinal and aromatic plants are known to produce secondary metabolites that find uses as flavoring agents, fragrances, insecticides, dyes and drugs. Biotechnology offers several choices through which secondary metabolism in medicinal plants can be altered in innovative ways, to overproduce phytochemicals of interest, to reduce the content of toxic compounds or even to produce novel chemicals. Detailed investigation of chromatin organization and microRNAs affecting biosynthesis of secondary metabolites as well as exploring cryptic biosynthetic clusters and synthetic biology options, may provide additional ways to harness this resource. Plant secondary metabolites are a fascinating class of phytochemicals exhibiting immense chemical diversity. Considerable enigma regarding their natural biological functions and the vast array of pharmacological activities, amongst other uses, make secondary metabolites interesting and important candidates for research. Here, we present an update on changing trends in the biotechnological approaches that are used to understand and exploit the secondary metabolism in medicinal and aromatic plants. Bioprocessing in the form of suspension culture, organ culture or transformed hairy roots has been successful in scaling up secondary metabolite production in many cases. Pathway elucidation and metabolic engineering have been useful to get enhanced yield of the metabolite of interest; or, for producing novel metabolites. Heterologous expression of putative plant secondary metabolite biosynthesis genes in a microbe is useful to validate their functions, and in some cases, also, to produce plant metabolites in microbes. Endophytes, the microbes that normally colonize plant tissues, may also produce the phytochemicals produced by the host plant. The review also provides perspectives on future research in the field.
  相似文献   

9.
Biotechnology is playing a vital alternative role in the production of pharmaceutical plant secondary metabolites to support industrial production and mitigate over-exploitation of natural sources. High-value pharmaceuticals that include alkaloids, flavonoids, terpenes, steroids, among others, are biosynthesized as a defensive strategy by plants in response to perturbations under natural environmental conditions. However, they can also be produced using plant cell, tissue, and organ culture techniques through the application of various in vitro approaches and strategies. In the past decades, efforts were on the clonal propagation, biomass and secondary metabolites production in the in vitro cultures of medicinally important plants that produce these molecules. In recent years, the effort has shifted towards optimizing culture conditions for their production through the application of cell line selection, elicitation, precursor feeding, two-phase co-culture among cell, tissue, and organ culture approaches. The efforts are made with the possibility to scale-up the production, meet pharmaceutical industry demand and conserve natural sources of the molecules. Applications of metabolic engineering and production from endophytes are also getting increasing attention but, the approaches are far from practical application in their industrial production.  相似文献   

10.
Over the past decade, the evolving commercial importance of so-called plant secondary metabolites has resulted in a great interest in secondary metabolism and, particularly, in the possibilities to enhance the yield of fine metabolites by means of genetic engineering. Plant alkaloids, which constitute one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the tropane alkaloids biosynthesis pathways have been cloned, making the metabolic engineering of these alkaloids possible. The content of the target chemical scopolamine could be significantly increased by various approaches, such as introducing genes encoding the key biosynthetic enzymes or genes encoding regulatory proteins to overcome the specific rate-limiting steps. In addition, antisense genes have been used to block competitive pathways. These investigations have opened up new, promising perspectives for increased production in plants or plant cell culture. Recent achievements have been made in the metabolic engineering of plant tropane alkaloids and some new powerful strategies are reviewed in the present paper.  相似文献   

11.
Hairy roots, a plant disease caused by Agrobacterium rhizogenes, show distinctive features such as high growth rate, unlimited branching, and biochemical and genetic stability. Hairy roots resemble normal roots in terms of differentiated morphology and biosynthetic machinery, producing similar secondary metabolites compared to wild‐type roots. As a result, hairy roots have been a topic of intense research for the past three decades, fueling innumerable attempts to develop in vitro hairy root cultures for a large number of plants for the commercial‐scale production of secondary metabolites. The same characteristics have now led to further applications, such as using hairy root cultures as experimental systems for secondary metabolic pathway elucidation studies. Although the trend is relatively new, it has already gained momentum. This review summarizes these developments. The following discussion focuses on the rationale and advantages of using hairy root cultures for secondary metabolic pathway elucidation studies, the methods used, and the results that have been obtained so far.  相似文献   

12.
ABSTRACT

Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

13.
14.
Metabolic Engineering of Tropane Alkaloid Biosynthesis in Plants   总被引:8,自引:0,他引:8  
Over the past decade, the evolving commercial importance of so-called plant secondary metabolites has resulted in a great interest in secondary metabolism and, particularly, in the possibilities to enhance the yield of fine metabolites by means of genetic engineering. Plant alkaloids, which constitute one of the largest groups of natural products, provide many pharmacologically active compounds. Several genes in the tropane alkaloids biosynthesis pathways have been cloned, making the metabolic engineering of these alkaloids possible. The content of the target chemical scopolamine could be significantly increased by various approaches, such as introducing genes encoding the key biosynthetic enzymes or genes encoding regulatory proteins to overcome the specific rate-limiting steps. In addition, antisense genes have been used to block competitive pathways. These investigations have opened up new, promising perspectives for increased production in plants or plant cell culture. Recent achievements have been made in the metabolic engineering of plant tropane alkaloids and some new powerful strategies are reviewed in the present paper.  相似文献   

15.
Different methods of in vitro culture of Catharanthus roseus provide new sources of plant material for the production of secondary metabolites such as indole alkaloids. Callus, cell suspension, plantlets, and transgenic roots cultured in the bioreactor are used in those experiments. The most promising outcomes include the production of the following indole alkaloids: ajmalicine in unorganised tissue, catharanthine in the leaf and cell culture in the shake flask and airlift bioreactor, and vinblastine in shoots and transformed roots. What is very important, enzymatic coupling of monomeric indole alkaloids, vindoline and catharanthine, is possible to form vinblastine in cell cultures. The method of catharanthine and ajmalicine production in the suspension culture in bioreactors has been successful. In this method, elicitation may be used acting on different metabolic pathways. Also of interest is the method of obtaining arbutin from the callus culture of C. roseus conducted with hydroquinone. The transformed root culture seems to be the most promising for alkaloid production. The genetically transformed roots, obtained by the infection with Agrobacterium rhizogenes, produce higher levels of secondary metabolites than intact plants. Also, whole plants can be regenerated from hairy roots. The content of indole alkaloids in the transformed roots was similar or even higher when compared to the amounts measured in studies of natural roots. The predominant alkaloids in transformed roots are ajmalicine, serpentine, vindoline and catharanthine, found in higher amounts than in untransformed roots. Transformed hairy roots have been also used for encapsulation in calcium alginate to form artificial seeds.  相似文献   

16.
Plant cell cultures are potentially rich sources of valuable pharmaceuticals and other biologically active phytochemicals, but relatively few cultures synthesize secondary compounds over extended periods in amounts comparable to those found in the whole plant. Frequently, no secondary metabolites characteristic of the intact plant are produced. So far, the manipulation of culture media, culture conditions and phytohormone levels have, in general, failed to permit commercial production of those phytochemicals useful in medicine and industry. This almost certainly reflects the lack of understanding of basic secondary metabolic regulation in cultured plant cells.

Microbial insult can induce antibiotic phytochemical synthesis in cultured plant cells: the microbial molecules which stimulate synthesis have been called ‘elicitors’. Increased synthesis of secondary products in response to elicitation of various types appear to be the general response of cultured cells. This paper illustrates the immense biotechnological potential of plant cell culture—‘elicitor’ (inducer) interactions to the large scale production of secondary metabolites, and suggests several lines of enquiry that remain to be authoritatively treated.  相似文献   


17.
植物细胞生物反应器培养的研究进展(I)   总被引:6,自引:0,他引:6  
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制.本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集、溶氧及气体成分、流体性能、剪切力对植物细胞培养产生的影响.  相似文献   

18.
利用植物细胞大规模悬浮培养生产植物有用代谢产物在近些年来取得了很大发展,但植物细胞悬浮培养的工业化应用受到来自生物及工程技术上的限制。本文针对植物细胞培养的基本特点,详细讨论了与大规模生产有关的工程技术方面的问题,如植物细胞聚集、溶氧及气体成分、流体性能、剪切力对植物细胞培养产生的影响。  相似文献   

19.
Anthocyanins, responsible for the various attractive colors in plants, are becoming important alternative to many synthetic colorants due to increased public concerns over the safety of artificial food colors. Production of anthocyanins by plant cell cultures has been suggested as a feasible technology that has attracted considerable industrial and academic interests in the past two decades. This paper is to provide an overview of the present status and the future prospects in the commercial development of plant cell cultures for production of anthocyanins. The focus is on the strategies for enhancement of anthocyanin biosynthesis to achieve an economically viable technology for commercial applications. Through strain improvement, optimization of media and culture conditions, and intelligent process strategies such as elicitation and two-stage system, significant enhancement in productivity has been achieved in a number of cultures. However the yield of anthocyanins obtained so far is still far away from the full potential of anthocyanin synthesis by plant cell cultures. Further improvements require the insights on the regulation of anthocyanin synthesis, accumulation, storage and breakdown that will eventually lead to genetic manipulation of anthocyanin biosynthesis. Many studies have elucidated the metabolic pathway of anthocyanin biosynthesis. Preliminary studies on the regulation of anthocyanin biosynthesis on the levels of genes and enzymes are reviewed, showing that it is feasible to clone genes from secondary metabolism with an improved yield of anthocyanins. There is currently no commercial-scale trial for production of anthocyanin by plant cell cultures, but an intelligent integration of those existing strategies could provide a technology for industrial application competitive to the current production methods.  相似文献   

20.
Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stageetc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号