首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Formate dehydrogenase (FDH) is a stable enzyme that may be readily inactivated by the interaction with hydrophobic interfaces (e.g., due to strong stirring). This may be avoided by immobilizing the enzyme on a porous support by any technique. Thus, even if the enzyme is going to be used in an ultra-membrane reactor, the immobilization presents some advantages. Immobilization on supports activated with bromocianogen, polyethylenimine, glutaraldehyde, etc., did not promote any stabilization of the enzyme under thermal inactivation. However, the immobilization of FDH on highly activated glyoxyl agarose has permitted increasing the enzyme stability against any distorting agent: pH, T, organic solvent, etc. The time of support-enzyme reaction, the temperature of immobilization, and the activation of the support need to be optimized to get the optimal stability-activity properties. Optimized biocatalyst retained 50% of the offered activity and became 50 times more stable at high temperature and neutral pH. Moreover, the quaternary structure of this dimeric enzyme becomes stabilized by immobilization under optimized conditions. Thus, at acidic pH (conditions where the subunit dissociation is the first step in the enzyme inactivation), the immobilization of both subunits of the enzyme on glyoxyl-agarose has allowed the enzyme to be stabilized by hundreds of times. Moreover, the optimal temperature of the enzyme has been increased (even by 10 degrees C at pH 4.5). Very interestingly, the activity with NAD(+)-dextran was around 60% of that observed with free cofactor.  相似文献   

2.
The gene of the NAD-dependent formate dehydrogenase (FDH) from the yeast Candida boidinii was cloned by PCR using genomic DNA as a template. Expression of the gene in Escherichia coli yielded functional FDH with about 20% of the soluble cell protein. To confirm the hypothesis of a thiol-coupled inactivation process, both cysteine residues in the primary structure of the enzyme have been exchanged by site-directed mutagenesis using a homology model based on the 3D structure of FDH from Pseudomonas sp. 101 and from related dehydrogenases. Compared to the wt enzyme, most of the mutants were significantly more stable towards oxidative stress in the presence of Cu(II) ions, whereas the temperature optima and kinetic constants of the enzymatic reaction are not significantly altered by the mutations. Determination of the Tm values revealed that the stability at temperatures above 50 degrees C is optimal for the native and the recombinant wt enzyme (Tm 57 degrees C), whereas the Tm values of the mutant enzymes vary in the range 44-52 degrees C. Best results in initial tests concerning the application of the enzyme for regeneration of NADH in biotransformation of trimethyl pyruvate to Ltert leucine were obtained with two mutants, FDHC23S and FDHC23S/C262A, which are significantly more stable than the wt enzyme.  相似文献   

3.
Woodyer R  van der Donk WA  Zhao H 《Biochemistry》2003,42(40):11604-11614
Homology modeling was used to identify two particular residues, Glu175 and Ala176, in Pseudomonas stutzeri phosphite dehydrogenase (PTDH) as the principal determinants of nicotinamide cofactor (NAD(+) and NADP(+)) specificity. Replacement of these two residues by site-directed mutagenesis with Ala175 and Arg176 both separately and in combination resulted in PTDH mutants with relaxed cofactor specificity. All three mutants exhibited significantly better catalytic efficiency for both cofactors, with the best kinetic parameters displayed by the double mutant, which had a 3.6-fold higher catalytic efficiency for NAD(+) and a 1000-fold higher efficiency for NADP(+). The cofactor specificity was changed from 100-fold in favor of NAD(+) for the wild-type enzyme to 3-fold in favor of NADP(+) for the double mutant. Isoelectric focusing of the proteins in a nondenaturing gel showed that the replacement with more basic residues indeed changed the effective pI of the protein. HPLC analysis of the enzymatic products of the double mutant verified that the reaction proceeded to completion using either substrate and produced only the corresponding reduced cofactor and phosphate. Thermal inactivation studies showed that the double mutant was protected from thermal inactivation by both cofactors, while the wild-type enzyme was protected by only NAD(+). The combined results provide clear evidence that Glu175 and Ala176 are both critical for nicotinamide cofactor specificity. The rationally designed double mutant might be useful for the development of an efficient in vitro NAD(P)H regeneration system for reductive biocatalysis.  相似文献   

4.
NAD + -dependent glyceraldehyde dehydrogenases usually had lower activity in the nonphosphorylated Entner–Doudoroff (nED) pathway. In the present study, a new NAD + -dependent glyceraldehyde dehydrogenase was engineered from l-lactaldehyde dehydrogenase of E. coli (EC: 1.2.1.22). Through comparison of the sequence alignment and the active center model, we found that a residue N286 of l-lactaldehyde dehydrogenase contributed an important structure role to substrate identification. By free energy calculation, three mutations (N286E, N286H, N286T) were chosen to investigate the change of substrate specificity of the enzyme. All mutants were able to oxidate glyceraldehyde. Especially, N286T showed the highest activity of 1.1U/mg, which was 5-fold higher than the reported NAD + -dependent glyceraldehyde dehydrogenases, and 70% activity was retained at 55?°C after an hour. Compared to l-lactaldehyde, N286T had a one-third lower Km value to glyceraldehyde.  相似文献   

5.
Kinetic studies of formate dehydrogenase   总被引:4,自引:1,他引:3       下载免费PDF全文
1. The kinetic mechanism of formate dehydrogenase is a sequential pathway. 2. The binding of the substrates proceeds in an obligatory order, NAD(+) binding first, followed by formate. 3. It seems most likely that the interconversion of the central ternary complex is extremely rapid, and that the rate-limiting step is the formation or possible isomerization of the enzyme-coenzyme complexes. 4. The secondary plots of the inhibitions with HCO(3) (-) and NO(3) (-) are non-linear, which suggests that more than one molecule of each species is able to bind to the same enzyme form. 5. The rate of the reverse reaction with carbon dioxide at pH6.0 is 20 times that with bicarbonate at pH8.0, although no product inhibition could be detected with carbon dioxide. The low rate of the reverse reaction precluded any steady-state analysis as the enzyme concentrations needed to obtain a measurable rate are of the same order as the K(m) values for NAD(+) and NADH.  相似文献   

6.
NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) is one of the best enzymes for the purpose of NADH regeneration in dehydrogenase-based synthesis of optically active compounds. Low operational stability and high production cost of native FDHs limit their application in commercial production of chiral compounds. The review summarizes the results on engineering of bacterial and yeast FDHs aimed at improving their chemical and thermal stability, catalytic activity, switch in coenzyme specificity from NAD+ to NADP+ and overexpression in Escherichia coli cells.  相似文献   

7.
Enzymatic reactions conducted in organic solvents have many advantages. However, organic solvent molecules may replace water molecules at the protein surface and penetrate into the enzyme, which could lead to the denaturation of the enzyme or changes in its reaction kinetics and substrate specificity. Thus, it is important to enhance the stability of enzymes in organic solvents. To date, there has been no efficient rational approach developed to enhance enzyme stability in hydrophilic solvents. We developed a rational approach to enzyme design. The design rules were established by investigating stable mutants from previous studies of directed evolution. Candida antarctica lipase B (CalB) was used as a target enzyme due to its versatile applications in organic solvents. The N97Q, N264Q, and D265E mutants of CalB showed higher organic solvent stability than the wild type.  相似文献   

8.
9.
Steered molecular dynamics simulation has revealed the mechanism of formate transport via the substrate channel of formate dehydrogenase. It is shown that the structural organization of the channel promotes the transport of formate anion in spite of the fact that the channel is too narrow even for such a small molecule. The conformational mobility of Arg284 residue, one of the residues forming the wall of the substrate channel, provides for the binding and delivery of formate to the active site.  相似文献   

10.
Abstract Formate dehydrogenase (EC 1.2.1.2) was purified about 38-fold with an overall yield of 76% from a methanol-utilizing yeast, Candida methanolica (ATCC26175), in 4 steps and, by adding polyethylene glycol, the enzyme was crystallised for the first time. The final preparation appeared to be homogeneous by the criteria of polyacrylamide electrophoresis and analytical centrifugation. Compared with the yeast formate dehydrogenases so far reported, the purified enzyme exhibited higher specific activity (7.52 U/mg).  相似文献   

11.
Labrou NE 《Bioseparation》2000,9(2):99-104
Formate dehydrogenase (FDH, EC 1.2.1.2) from Candida boidinii was purified to homogeneity. The two step procedure comprised anion exchange chromatography (2.9-fold purification, 85% step yield, elution with 35 mM KCl), followed by dye-ligand affinity chromatography on immobilized Cibacron Blue 3GA (1.4-fold purification, 75% step yield, elution with 0.15 mM NAD+/2 mM Na2SO3). The procedure afforded FDH at 63.8% overall yield and a specific activity of 7.2 units/mg. The purity of the final FDH preparation was evaluated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), high performance gel filtration liquid chromatography (gfHPLC) and N-terminal amino acid sequencing. The analytical techniques showed the presence of a single polypeptide chain that corresponds to the molecular weight of 41 kDa (as determined by SDS-PAGE) and 81 kDa (as determined by gfHPLC).  相似文献   

12.
Catalytic mechanism and application of formate dehydrogenase   总被引:4,自引:0,他引:4  
NAD+-dependent formate dehydrogenase (FDH) is an abundant enzyme that plays an important role in energysupply of methylotrophic microorganisms and in response to stress in plants. FDH belongs to the superfamily of D-specific 2-hydroxy acid dehydrogenases. FDH is widely accepted as a model enzyme to study the mechanism of hydride ion transfer in the active center of dehydrogenases because the reaction catalyzed by the enzyme is devoid of proton transfer steps and implies a substrate with relatively simple structure. FDH is also widely used in enzymatic syntheses of optically active compounds as a versatile biocatalyst for NAD(P)H regeneration consumed in the main reaction. This review covers the late developments in cloning genes of FDH from various sources, studies of its catalytic mechanism and physiological role, and its application for new chiral syntheses.Translated from Biokhimiya, Vol. 69, No. 11, 2004, pp. 1537–1554.Original Russian Text Copyright © 2004 by Tishkov, Popov.  相似文献   

13.
The ternary complex of NAD-dependent formate dehydrogenase (FDH) from the methylotrophic bacterium Pseudomonas sp. 101 (enzyme-NAD-azide) has been crystallised in the space group P2(1)2(1)2(1) with cell dimensions a = 11.60 nm, b = 11.33 nm, c = 6.34 nm. There is 1 dimeric molecule/asymmetric unit. An electron density map was calculated using phases from multiple isomorphous replacement at 0.30 nm resolution. Four heavy atom derivatives were used. The map was improved by solvent flattening and molecular averaging. The atomic model, including 2 x 393 amino acid residues, was refined by the CORELS and PROLSQ packages using data between 1.0 nm and 0.30 nm excluding structure factors less than 1 sigma. The current R factor is 27.1% and the root mean square deviation from ideal bond lengths is 4.2 pm. The FDH subunit is folded into a globular two-domain (coenzyme and catalytic) structure and the active centre and NAD binding site are situated at the domain interface. The beta sheet in the FDH coenzyme binding domain contains an additional beta strand compared to other dehydrogenases. The difference in quaternary structure between FDH and the other dehydrogenases means that FDH constitutes a new subfamily of NAD-dependent dehydrogenases: namely the P-oriented dimer. The FDH nucleotide binding region of the structure is aligned with the three dimensional structures of four other dehydrogenases and the conserved residues are discussed. The amino acid residues which contribute to the active centre and which make contact with NAD have been identified.  相似文献   

14.
Purification and some properties of formate dehydrogenase   总被引:1,自引:0,他引:1  
  相似文献   

15.
In the present work, NAD+-dependent formate dehydrogenase (FDH), encoded by fdh gene from Candida boidinii was successfully displayed on Escherichia coli cell surface using ice nucleation protein (INP) from Pseudomonas borealis DL7 as an anchoring protein. Localization of matlose binding protein (MBP)-INP-FDH fusion protein on the E. coli cell surface was characterized by SDS-PAGE and enzymatic activity assay. FDH activity was monitored through the oxidation of formate catalyzed by cell-surface-displayed FDH with its cofactor NAD+, and the production of NADH can be detected spectrometrically at 340 nm. After induction for 24 h in Luria-Bertani medium containing isopropyl-β-d-thiogalactopyranoside, over 80% of MBP-INP-FDH fusion protein present on the surface of E. coli cells. The cell-surface-displayed FDH showed optimal temperature of 50 °C and optimal pH of 9.0. Additionally, the cell-surface-displayed FDH retained its original enzymatic activity after incubation at 4 °C for one month with the half-life of 17 days at 40 °C and 38 h at 50 °C. The FDH activity could be inhibited to different extents by some transition metal ions and anions. Moreover, the E. coli cells expressing FDH showed different tolerance to solvents. The recombinant whole cell exhibited high formate specificity. Finally, the E. coli cell expressing FDH was used to assay formate with a wide linear range of 5–700 μM and a low limit of detection of 2 μM. It is anticipated that the genetically engineered cells may have a broad application in biosensors, biofuels and cofactor regeneration system.  相似文献   

16.
The crystalline formate dehydrogenase from Candida methanolica, which showed the highest specific activity (7.52 U/mg) so far reported, was characterized in detail. The enzyme is a dimer composed of identical subunits, each containing one SH group related to the catalytic activity. The molecular mass of the enzyme is about 82-86 kDa. The Km values were found to be 3.0 mM for formate and 0.11 mM for NAD+. Even if the enzyme was incubated at pH 6.5-9.5 or at 55 degrees C, the activity remained at 100%. Hg2+, Ni2+, NaCN, NaN3 and p-chloromercuribenzoate strongly inhibited the enzyme activity, while the enzyme showed relatively high resistance to various chelating agents. The amino acid composition and some other physicochemical properties of the enzyme were studied. Immunological studies revealed that formate dehydrogenases of methanol-utilizing yeasts immunologically more or less resemble each other, but differ from those of methanol-utilizing bacteria. Furthermore, yeast formate dehydrogenases can be immunologically classified into three types: (a) the Candida type, (b) the Torulopis/Hansenula/Pichia type and (c) the formaldehyde-resistant yeast type. For simple and large-scale preparation of the enzyme for practical use, treatment of cells of C. methanolica with the commercial cationic detergent, 'Benzalkonium' cation, is useful: the total and specific activities of the enzyme are 1.17-fold and 3.10-fold higher than those of the crude cell-free extract, respectively.  相似文献   

17.
Stabilization of halophilic malate dehydrogenase   总被引:4,自引:0,他引:4  
Malate dehydrogenase from the extreme halophile, Halobacterium marismortui, is stable only in highly concentrated solutions of certain salts. Previous work has established that its physiological environment is saturated in KCl; it remains soluble is saturated NaCl or KCl solutions; also it unfolds in solutions containing less than 2.5 M-NaCl or -KCl, salt concentrations which are still relatively high. New data show that the structure of this enzyme can be stabilized in a range of high concentrations of Mg2+ or other "salting-in" ions, also with exceptional protein-solvent interactions. "Salting-in" ions, contrary to stabilizing protein structure, usually favour unfolding. These, and most other results concerning the structure, stability and solvent interactions of the protein cannot be understood in terms of the usual effects of salts on protein structure. In this paper, a novel stabilization model is proposed for halophilic malate dehydrogenase that can account for all observations so far. The model results from experiments on the protein in salt solutions chosen for their different effects on protein stability (potassium phosphate, a strongly "salting-out" agent, and MgCl2, which is "salting-in"), and previously published data from NaCl and KCl solutions (mildly "salting-out"). Enzymic activity and stability measurements were combined with neutron scattering, ultracentrifugation and quasi-elastic light-scattering experiments. The analysis showed that the structure of the protein in solution as well as the dominant stabilization mechanisms were different in different salt solutions in which this enzyme is active. Thus, in molar concentrations of phosphate ions, stabilization and hydration are similar to those of non-halophilic soluble proteins, in which the hydrophobic effect dominates. In high concentrations of KCl, NaCl or MgCl2, on the other hand, solution particles are formed in which the protein dimer interacts with large numbers of salt and water molecules (the mass of solvent molecules involved depends on the nature of the salt but it is approximately equivalent to the protein mass). It is proposed that, under these conditions, the hydrophobicity of the protein core is too weak to stabilize the folded structure and the main stabilization mechanism is the formation of co-operative hydrate bonds between the protein and hydrated salt ions. Model predictions are in agreement with all experimental results, such as the different numbers of solvent molecules found in the solution particles formed with different salts, the loss of the exceptional solvent interactions concomitant with unfolding at non-physiological salt concentrations, and the different temperature denaturation curves observed for different salt solutions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
It is known that one of the reasons leading to the development of neuroligical disorders, such as Parkinson’s disease, is the damage of the mitochondrial NADH dehydrogenase. We suggest that it happens when NADH dehydrogenase loses connection with its coenzyme flavine mononucleotide (FMN) in the active center. This process is blocked by the enzyme substrate NADH or by the reaction product NAD. In this work we have developed a method based on fluorescence spectroscopy to monitor the stability of FMN in isolated rat liver mitochondria. It was observed that this process is strongly blocked by adenine analogs ATP, ADP, and AMP. Adenine, adenosine, NADPH, nicotine amide, and nicotine acid did not prevent the FMN loss. The obtained data could be used as a basis for construction of synthetic analogues of adenosine phosphates for the treatment of mitochondrial diseases.  相似文献   

19.
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The Km for formate is 26 mM, and the Km for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent catalysis of benzyl viologen reduction was calculated to be 1.7 x 10(5) min-1. Isotope exchange analysis showed that the enzyme catalyzes carbon exchange between carbon dioxide and formate in the absence of other electron acceptors, confirming the ping-pong reaction mechanism. Dissociation constants for formate (12.2 mM) and CO2 (8.3 mM) were derived from analysis of the isotope exchange data. The enzyme catalyzes oxidation of the alternative substrate deuterioformate with little change in the Vmax, but the Km for deuterioformate is approximately three times that of protioformate. This implies formate oxidation is not rate-limiting in the overall coupled reaction of formate oxidation and benzyl viologen reduction. The deuterium isotope effect on Vmax/Km was observed to be approximately 4.2-4.5. Sodium nitrate was found to inhibit enzyme activity in a competitive manner with respect to formate, with a Ki of 7.1 mM. Sodium azide is a noncompetitive inhibitor with a Ki of about 80 microM.  相似文献   

20.
The understanding of the mechanism of enzymatic recovery of NADH is of biological and of considerable biotechnological interest, since the essential, but expensive, cofactor NADH is exhausted in asymmetric hydrogenation processes, but can be recovered by NAD(+)-dependent formate dehydrogenase (FDH). Most accepted for this purpose is the FDH from the yeast Candida boidinii (CbFDH), which, having relatively low thermostability and specific activity, has been targeted by enzyme engineering for several years. Optimization by mutagenesis studies was performed based on physiological studies and structure modeling. However, X-ray structural information has been required in order to clarify the enzymatic mechanism and to enhance the effectiveness and operational stability of enzymatic cofactor regenerators in biocatalytic enantiomer synthesis as well as to explain the observed biochemical differences between yeast and bacterial FDH. We designed two single-point mutants in CbFDH using an adapted surface engineering approach, and this allowed crystals suitable for high-resolution X-ray structural studies to be obtained. The mutations improved the crystallizability of the protein and also the catalytic properties and the stability of the enzyme. With these crystal structures, we explain the observed differences from both sources, and form the basis for further rational mutagenesis studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号