首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Microbiota decussata Kom. (Cupressaceae) is a subalpine species endemic to the Sikhote Alin Mountains with populations scattered throughout the range. We used sequence data for four noncoding regions of chloroplast DNA to characterize the genetic diversity in populations sampled from different parts of M. decussata natural range. No variation was observed in the trnT–trnF region, whereas the trnH–psbA, trnS–trnfM, and trnS–trnG regions showed polymorphisms. At the species level, we found a low nucleotide diversity (π = 0.0009) and high haplotype diversity (h = 0.981) as well as high differentiation (ΦST = 0.420). N ST and G ST values suggested the existence of a phylogeographic structure in M. decussata. The observed patterns of diversity could be explained in part by ecological features of the species and its long-term persistence throughout the range with population expansion, successive fragmentation and isolation.  相似文献   

2.
Marbled murrelets (Brachyramphus marmoratus) are coastal seabirds that nest from California to the Aleutian Islands. They are declining and considered threatened in several regions. We compared variation in the mitochondrial control region, four nuclear introns and three microsatellite loci among194 murrelets from throughout their range except Washington and Oregon. Significant population genetic structure was found: nine private control region haplotypes and three private intron alleles occurred at high frequency in the Aleutians and California; global estimates of F ST or ΦST and most pairwise estimates involving the Aleutians and/or California were significant; and marked isolation-by-distance was found. Given the available samples, murrelets appear to comprise five genetic management units: (1) western Aleutian Islands, (2) central Aleutian Islands, (3) mainland Alaska and British Columbia, (4) northern California, and (5) central California.  相似文献   

3.
The genetic diversity and population structure of the vulnerable Chinese Egret (Egretta eulophotes) were surveyed in the present study from three archipelagoes that cover the most southerly to the very northerly parts of the Chinese distribution range of this species, using a 433-bp fragment of the mitochondrial control region (CR). Among 90 individual samples, 31 different haplotypes were defined by 30 polymorphic sites. Overall haplotype diversity, nucleotide diversity and mean sequence divergence (p-distance) of this egret were 0.920, 0.0088 and 1.11%, respectively. NJ tree and parsimony network for the CR haplotypes of the Chinese Egret showed little genetic structure, and analysis of molecular variance indicated low but significant genetic differentiation (haplotype-based ΦST = 0.03267, P < 0.05 and distance-based ΦST = 0.04194, P < 0.05) among populations. The significant Fu’s F S tests (Fu’s F S  = −16.946, P < 0.01) and mismatch distribution analysis (τ = 4.463, SSD = 0.0081, P = 0.12) suggested that the low genetic differentiation and little geographical structure of the genetic differentiation might be explained by the population expansion. The Mantel test (haplotype-based F ST, r = 0.639, P = 0.34 and distance-based F ST, r = 0.947, P = 0.15) suggest that the significant genetic differentiation among populations was likely due to isolation by distance.  相似文献   

4.
Cedrus libani of Lebanon is a valuable natural resource and the dominant species in its natural ecosystem. Intense and diverse anthropogenic pressures over historical times raised concerns about its genetic vigor and continued survival. Our investigation of the genetic diversity included samples from all remnant natural populations. Assessment of the genetic diversity using random amplified polymorphic DNA markers revealed the persistence of considerable variation distributed within populations with low population differentiation corroborated by Bayesian and analysis of molecular variance estimates (G ST = 0.07, Φ ST = 0.09). Individual assignment tests were carried out to investigate measures of gene flow. Inferences concluded that this natural heritage is not currently threatened by inbreeding or by random genetic drift. Correlation studies investigated possible effects of spatial distribution and environmental conditions on genetic structure. A climatic trend corresponding to a temperature–humidity gradient correlated significantly with the level of genetic diversity, while the edaphic variation did not.  相似文献   

5.
A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.  相似文献   

6.
Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.  相似文献   

7.
Musk Ducks (Biziura lobata) are endemic to Australia and occur as two geographically isolated populations separated by the Nullarbor Plain, a vast arid region in southern Australia. We studied genetic variation in Musk Duck populations at coarse (eastern versus western Australia) and fine scales (four sites within eastern Australia). We found significant genetic structure between eastern and western Australia in the mtDNA control region (ΦST = 0.747), one nuclear intron (ΦST = 0.193) and eight microsatellite loci (FST = 0.035). In contrast, there was little genetic structure between Kangaroo Island and adjacent mainland regions within eastern Australia. One small population of Musk Ducks in Victoria (Lake Wendouree) differed from both Kangaroo Island and the remainder of mainland eastern Australia, possibly due to genetic drift exacerbated by inbreeding and small population size. The observed low pairwise distance between the eastern and western mtDNA lineages (0.36%) suggests that they diverged near the end of the Pleistocene, a period characterised by frequent shifts between wet and arid conditions in central Australia. Our genetic results corroborate the display call divergence and Mathews’ (Austral Avian Record 2:83–107, 1914) subspecies classification, and confirm that eastern and western populations of Musk Duck are currently isolated from each other.  相似文献   

8.
The crystal darter, Crystallaria asprella, exists in geographically isolated populations that may be glacial relicts from its former, wide distribution in the Eastern U.S. An initial phylogeographic survey of C. asprella based upon the mitochondrial cytochrome b (cyt b) gene indicated that there were at least four distinct populations within the species: Ohio River basin, Upper Mississippi River, Gulf coast, and lower Mississippi River. In particular, the most divergent population was the most recently discovered, from the Elk River, WV, in the Ohio River basin, and it was postulated that this population represents an undescribed, potentially threatened species. However, differentiation observed at a single gene region is generally not considered sufficient evidence to establish taxonomic status. In the present study, nucleotide variation at the mitochondrial control region and a nuclear S7 ribosomal gene intron were compared to provide independent verification of phylogeographic results between individuals collected from the same five disjunct populations previously surveyed. Variation between populations at the control region was substantial (except between Gulf drainages) and was concordant with patterns of sequence divergence from cyt b. Only the Elk River population was resolved as monophyletic based upon nuclear S7, but significant differences based upon ΦST statistics were observed between most populations. Morphometric data were consistent with molecular data regarding the distinctiveness of the Elk River population. It is proposed that populations of C. asprella consist of at least four distinct population segments, and that the Elk River group likely constitutes a distinct species.  相似文献   

9.
Resende LC  Ribeiro RA  Lovato MB 《Genetica》2011,139(9):1159-1168
In this study we evaluated the influence of recent landscape fragmentation on the dynamics of remnant fragments from the Brazilian Atlantic Forest. This biome is one of the richest in the world and has been extensively deforested and fragmented. We sampled five populations of the threatened Dalbergia nigra, a tree endemic to the Brazilian Atlantic Forest, two located in a large reserve of continuous forest and three in fragments of different sizes and levels of disturbance. In order to assess historical changes, considering the longevity of the analyzed species, 119 adults and 116 saplings were genotyped for six microsatellite loci. Lower levels of genetic diversity were found in the most impacted fragments when compared to the most preserved population located inside the reserve, and there was significant genetic structure among the populations studied (pairwise F ST = 0.031–0.152; pairwise D EST = 0.039–0.301). However, genetic structure among saplings (F ST = 0.056; D EST = 0.231) was significantly lower than among adults (F ST = 0.088; D EST = 0.275). Estimates of contemporary gene flow based on assignment tests corroborated this result, suggesting that fragmentation led to an increase in gene flow. This connectivity among remnant fragments could mitigate the loss of genetic diversity through a metapopulation dynamic, but the high rate of habitat loss and the unknown long-term genetic effects add uncertainty. These results, taken together with the presence of private alleles in disturbed populations, highlight the importance of preserving the extant fragments.  相似文献   

10.
The endemic and critically endangered cyprinid Chondrostoma lusitanicum has a very restricted distribution range. In order to estimate genetic diversity, characterize population structure and infer the demographic history, we examined six microsatellite loci and cytochrome b (mtDNA) sequences from samples taken throughout C. lusitanicum’s geographical range. Estimates of genetic diversity were low in all samples (average He < 0.35). The microsatellite data pointed to a major difference between northern (Samarra and Tejo drainages) and southern (Sado and Sines drainages) samples. This separation was not so clear with mtDNA, since one sample from the Tejo drainage grouped with the southern samples. This could be related with ancestral polymorphism or with admixture events between northern and southern sites during the late Pleistocene. Nevertheless, both markers indicate high levels of population differentiation in the north (for microsatellites F ST >  0.23; and for mtDNA ΦST > 0.74) and lower levels in the south (F ST < 0.05; ΦST < 0.40). With microsatellites we detected strong signals of a recent population decrease in effective size, by more than one order of magnitude, starting in the last centuries. This is consistent with field observations reporting a severe anthropogenic-driven population decline in the last decades. On the contrary mtDNA suggested a much older expansion. Overall, these results suggest that the distribution of genetic diversity in C. lusitanicum is the result of both ancient events related with drainage system formation, and recent human activities. The potential effect of population substructure generating genetic patterns similar to a population decrease is discussed, as well as the implications of these results for the conservation of C. lusitanicum. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
The clam Ruditapes decussatus is commercially important in the south of Portugal. The random amplified polymorphic DNA (RAPD) technique was applied to assess the genetic diversity and population structure of two Portuguese populations occurring in the Ria Formosa (Faro) and the Ria de Alvor, respectively. Twenty-five individuals of each population were investigated by RAPD profiles. Genetic diversity within populations, measured by the percentage of polymorphic loci (%P), varied between 68.57% (Alvor) and 73.88% (Faro). Shannon’s information index (H) and Nei’s gene diversity (h) were 0.281 and 0.176, respectively, for the Alvor population and 0.356 and 0.234 for the Faro population. Overall, genetic variation within R. decussatus populations was high. The total genetic diversity (H T) was explained by a low variation between populations (G ST = 0.145), which is consistent with high gene flow (N m = 2.9). The analysis of molecular variance (AMOVA) showed that 65% of variability is within populations and 35% between populations (ΦPT = 0.345; P ≥ 0.001). The value of Nei’s genetic distance was 0.0881, showing a low degree of population genetic distance, despite the different geographic origin. This is the first study on the population genetics of R. decussatus by RAPD technique. The results may be useful for restocking programs and aquaculture.  相似文献   

12.
Sharks of the genus Rhizoprionodon are among the most important predators along the coastal marine ecosystems, and they represent an important economic resource for the small-scale fisheries. To properly manage and conserve exploited shark species, detailed analyses of their population structure are needed. To evaluate the gene flow and levels of the genetic diversity among populations of the Caribbean sharpnose shark R. porosus, we identified the nucleotide sequence based on collections (n = 321 specimens) from 10 different areas, including the Caribbean Sea and several locations along the entire Brazilian coast. The analysis of 802 nucleotides from the mitochondrial DNA control region revealed 53 distinct haplotypes. The majority of these haplotypes were restricted to their collection locales with a significant genetic structure detected among the overall populations (Φ ST  = 0.237, P < 0.0001). The data suggest a population division with two distinct management units in the western Atlantic. These management units are likely separated by the Equatorial Current. The strong population structure in R. porosus indicates that regional populations, if depleted, will not recover swiftly through immigration.  相似文献   

13.
Habitat loss is the single greatest threat to persistence of the critically threatened California tiger salamander (Ambystoma californiense). To aid management plans that designate critical habitat for this species, I developed and characterized 21 tetranucleotide microsatellite markers using two native populations in Santa Barbara and Alameda Counties. Allelic variation and average heterozygosities were lower in the endangered Santa Barbara population (allele range 1–4, mean 2.4; H O = 0.308 H E = 0.288) compared with the threatened Alameda population (allele range 2–10, mean 6.7; H O = 0.712, H E = 0.722). In-depth population studies using these markers will provide vital information for plans to assign critical habitat that optimize gene flow among breeding populations, as well as for identifying non-native hybrid genotypes that threaten native A. californiense stocks. Beyond the conservation goals for A. californiense, the close phylogenetic relationships within the tiger salamander complex also suggest a broad utility for population studies using these markers.  相似文献   

14.
This is the first record of the Pacific seahorse Hippocampus ingens at a northern oceanic island from the eastern Pacific Ocean. The photographic record of the juvenile female H. ingens was made in November 2015 during a cage diving trip at Guadalupe Island, Mexico. The presence of H. ingens in this area could be related to long distance dispersal mechanisms, as has been observed in other species of seahorses.  相似文献   

15.
Pacific halibut collected in the Aleutian Islands, Bering Sea and Gulf of Alaska were used to test the hypothesis of genetic panmixia for this species in Alaskan marine waters. Nine microsatellite loci and sequence data from the mitochondrial (mtDNA) control region were analyzed. Eighteen unique mtDNA haplotypes were found with no evidence of geographic population structure. Using nine microsatellite loci, significant heterogeneity was detected between Aleutian Island Pacific halibut and fish from the other two regions (F ST range = 0.007–0.008). Significant F ST values represent the first genetic evidence of divergent groups of halibut in the central and western Aleutian Archipelago. No significant genetic differences were found between Pacific halibut in the Gulf of Alaska and the Bering Sea leading to questions about factors contributing to separation of Aleutian halibut. Previous studies have reported Aleutian oceanographic conditions at deep inter-island passes leading to ecological discontinuity and unique community structure east and west of Aleutian passes. Aleutian Pacific halibut genetic structure may result from oceanographic transport mechanisms acting as partial barriers to gene flow with fish from other Alaskan waters.  相似文献   

16.
The Japanese wood pigeon (Columba janthina) is endemic to the islands of East Asia and it is included in the Japanese and Asian Red Lists because of its narrow habitat range that is restricted to mature forests on small islands and because of the destruction of these habitats. We examined the genetic structure of Columba janthina by studying 463 base pairs of the mitochondrial control region sequences. We analyzed 154 samples from eight populations and identified 27 haplotypes. Three population groups were identified based on the pairwise ΦST values. A substantial gene flow, as reflected by the low and non-significant ΦST values, is maintained among the northern group that includes six populations found on the Okinawa, Tokara, Goto, Setouchi, Oki, and Izu islands. In contrast, the southeastern group found on the Ogasawara Islands had large ΦST values with every population from other regions (0.910 < ΦST < 0.962). The southwestern group found on the Sakishima Islands also had significant but small ΦST values with every population from the northern group (0.081 < ΦST < 0.205). The Mantel test showed a highly significant correlation between the ΦST values and the route length of the habitat network, as well as the linear distance with correction of the habitat gap effect, indicating the importance of the closely connected structure of the habitats. The three groups mentioned above could be considered as independent management units, and the southeastern group has the highest conservation priority due to its narrow distribution range and small population size. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

17.
The endangered species Paeonia rockii is the most important ancestral species of the cultivated tree peonies. These well-known ornamental plants are termed the ‘King of Flowers’ in China. In this study, we investigated the genetic diversity and phylogeographic structure of 335 wild samples from 20 populations throughout the entire distributional range of the species based on three chloroplast DNA sequences (petBpetD, rps16trnQ and psbAtrnH). At those loci, high levels of genetic differentiation (G ST  = 0.94) and low levels of genetic variation (θ = 0.00185) were detected. The intraspecific phylogeny revealed four groups, the western group, the Taibai mountain group, the northern group and the eastern group, which closely coincided with the geographic distribution of the species. A phylogeographic structure of this kind could result from a number of integrated factors, such as allopatric fragmentation, climatic fluctuations, increased abortion and declining germination of seeds, or lack of gene flow among populations, especially across the geographic barrier of the high Qinling Mountains, and it could also result from adaptive evolution. For conservation purposes, each extant population of P. rockii should be recognized as a conservation-significant unit, and a more stringent conservation strategy should incorporate in situ and ex situ methods.  相似文献   

18.
The Mexican highlands are areas of high biological complexity where taxa of Nearctic and Neotropical origin and different population histories are found. To gain a more detailed view of the evolution of the biota in these regions, it is necessary to evaluate the effects of historical tectonic and climate events on species. Here, we analyzed the phylogeographic structure, historical demographic processes, and the contemporary period, Last Glacial Maximum (LGM) and Last Interglacial (LIG) ecological niche models of Quercus castanea, to infer the historical population dynamics of this oak distributed in the Mexican highlands. A total of 36 populations of Q. castanea were genotyped with seven chloroplast microsatellite loci in four recognized biogeographic provinces of Mexico: the Sierra Madre Occidental (western mountain range), the Central Plateau, the Trans‐Mexican Volcanic Belt (TMVB, mountain range crossing central Mexico from west to east) and the Sierra Madre del Sur (SMS, southern mountain range). We obtained standard statistics of genetic diversity and structure and tested for signals of historical demographic expansions. A total of 90 haplotypes were identified, and 29 of these haplotypes were restricted to single populations. The within‐population genetic diversity was high (mean hS = 0.72), and among‐population genetic differentiation showed a strong phylogeographic structure (NST = 0.630 > GST = 0.266; p < .001). Signals of demographic expansion were identified in the TMVB and the SMS. The ecological niche models suggested a considerable percentage of stable distribution area for the species during the LGM and connectivity between the TMVB and the SMS. High genetic diversity, strong phylogeographic structure, and ecological niche models suggest in situ permanence of Q. castanea populations with large effective population sizes. The complex geological and climatic histories of the TMVB help to explain the origin and maintenance of a large proportion of the genetic diversity in this oak species.  相似文献   

19.
Commiphora wightii is a medicinally important endangered species endemic to the Thar Desert of Rajasthan, India and adjoining areas of Pakistan. The populations of this species are declining sharply because of its extensive use as a natural herb. Random amplified polymorphic DNA analysis was conducted to find the genetic variation among 7 populations of C. wightii. Of the 100 random primers screened, 44 primers yielded 220 loci. Statistical analysis indicated low genetic diversity (H pop = 0.0958; I = 0.1498; mean polymorphic loci = 14.28%), and high genetic differentiation among the populations (G ST = 0.3990; AMOVA Φ ST of 0.3390; Bayesian θ (II) = 0.3002). The low genetic diversity may be due to geographic isolation and restricted gene flow (N m = 0.7533) between the fragmented populations. Unsustainable utilization of the plant has fragmented the population continuum which served the purpose of genetic exchange between populations. Mantel’s test was performed which revealed a highly significant positive correlation between genetic and geographic distance (r 2 = 0.614, P = 0.023) among the populations studied. Low variation can also be attributed to poor seed setting and the slow growth pattern of the species, which is also an apomict. In UPGMA dendrogram the Commiphora wightii samples were divided into two major and one minor cluster. These findings can serve as a guide to preserving the genetic resources of this medicinal plant species.  相似文献   

20.
We evaluated the genetic structure of 16 Betula maximowicziana populations in the Chichibu mountain range, central Japan, located within a 25-km radius; all but two populations were at altitudes of 1,100–1,400 m. The results indicate the effects of geographic topology on the landscape genetic structure of the populations and should facilitate the development of local-scale strategies to conserve and manage them. Analyses involving 11 nuclear simple sequence repeat loci showed that most populations had similar intrapopulation genetic diversity parameters. Population differentiation (F ST = 0.021, GST = 0.033) parameters for the populations examined were low but were relatively high compared to those obtained in a previous study covering populations in a much larger area with a radius of approximately 1,000 km (F ST = 0.062, GST = 0.102). Three populations (Iriyama, Kanayamasawa, and Nishizawa) were differentiated from the other populations by Monmonier’s and spatial analysis of molecular variance algorithms or by STRUCTURE analysis. Since a high mountain ridge (nearly 2,000 m) separates the Kanayamasawa and Nishizawa populations from the other 14 populations and the Kanayamasawa and Nishizawa populations are themselves separated by another mountain ridge, the genetic structure appears to be partly due to mountain ridges acting as genetic barriers and restricting gene flow. However, the Iriyama population is genetically different but not separated by any clear geographic barrier. These results show that the landscape genetic structure is complex in the mountain range and we need to pay attention, within landscape genetic studies and conservation programs, to geographic barriers and local population differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号