首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied the effects of synthetic analogs of phytohormones (benzyladenine, IAA, and GA) on the activities of the enzymes catalyzing sucrose synthesis and metabolism, sucrose phosphate synthase (SPS, EC 2.4.1.14) and sucrose synthase (SS, EC 2.4.1.13), and on the content of chlorophyll and protein during the sugar-beet (Beta vulgaris L.) ontogeny. Plant spraying with phytohormonal preparations activated SPS in leaves; direct interaction between phytohormones and the enzyme also increased its activity. The degree of this activation differed during the ontogeny and in dependence on the compound used for treatment. Analogs of phytohormones maintained high protein level in leaves, retarded chlorophyll breakdown, and, thus, prolonged leaf functional activity during development. Phytohormonal preparations practically did not affect the SS activity both after plant treatment and at their direct interaction with the enzyme. It is supposed that the SS activity in sugar-beet roots is controlled by sucrose synthesized in leaves rather than by phytohormones. The effects of hormones on leaf metabolism were mainly manifested in growth activation.  相似文献   

3.
4.
5.
棉花胚珠纤维发育的研究   总被引:1,自引:0,他引:1  
将未受精的棉花胚珠漂浮培养在加有不同植物激素的BT培养基上,培养48小时或96小时后,用扫描电镜观察纤维发育情况,以及测定胚珠内IAA氧化酶活性变化及内源ABA的含量变化,并和同一时期的大田生长的胚珠进行比较。结果表明:IAA+GA_3是最佳激素组合。在这种激素组合的培养基中培养的未受精胚珠,在纤维发育、酶活性变化等方面,均与大田生长的胚珠相似。这一激素组合还能抑制离体胚珠内源ABA的增长,但同一时期的大田生长的胚珠,其内源ABA含量却相对要高。  相似文献   

6.
To investigate the involvement of phytohormones during rice microspore/pollen (MS/POL) development, endogenous levels of IAA, gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the mature anther were analyzed. We also analyzed the global expression profiles of genes related to seven phytohormones, namely auxin, GAs, CKs, brassinosteroids, ethylene, ABA and jasmonic acids, in MS/POL and tapetum (TAP) using a 44K microarray combined with a laser microdissection technique (LM-array analysis). IAA and GA(4) accumulated in a much higher amount in the mature anther compared with the other tissues, while CKs and ABA did not. LM-array analysis revealed that sets of genes required for IAA and GA synthesis were coordinately expressed during the later stages of MS/POL development, suggesting that these genes are responsible for the massive accumulation of IAA and GA(4) in the mature anther. In contrast, genes for GA signaling were preferentially expressed during the early developmental stages of MS/POL and throughout TAP development, while their expression was down-regulated at the later stages of MS/POL development. In the case of auxin signaling genes, such mirror-imaged expression observed in GA synthesis and signaling genes was not observed. IAA receptor genes were mostly expressed during the late stages of MS/POL development, and various sets of AUX/IAA and ARF genes were expressed during the different stages of MS/POL or TAP development. Such cell type-specific expression profiles of phytohormone biosynthesis and signaling genes demonstrate the validity and importance of analyzing the expression of phytohormone-related genes in individual cell types independently of other cells/tissues.  相似文献   

7.
8.
赤霉素(gibberellin,GA)是一类非常重要的植物激素,在植物种子萌发、茎干伸长、叶片生长、腺毛发育、花粉成熟、开花诱导和果实成熟等生长发育过程中都发挥着重要的作用。GA在一年生草本植物中可以促进开花,而在大多数多年生木本植物中则抑制成花诱导。为了更好地研究赤霉素在木本油料能源植物小桐子(Jatropha curcas)开花调控方面的作用机理,我们对小桐子整个基因组中参与GA合成代谢和信号转导的全部基因进行了鉴定和序列分析。这些基因包括6个多基因家族编码的蛋白,即GA2氧化酶(GA2-oxidase,GA2ox)、GA3氧化酶(GA3-oxidase,GA3ox)、GA20氧化酶(GA20-oxidase,GA20ox)、GID1(GIBBERELLIN INSENSITIVE DWARF1)、DELLAs和F-box蛋白,以及2个单基因编码的蛋白,EL1(EARLY FLOWERING1)和SPY(SPINDLY)。采用拟南芥和水稻中已经鉴定的上述基因编码的蛋白序列在小桐子基因组序列数据库和本实验的小桐子转录组数据库中进行BLASTP分析,找到17个同源蛋白的全长序列,并将其与28个拟南芥的、16个水稻的、24个葡萄的和22个蓖麻的同源蛋白构建系统发育树进行比对分析。结果表明,小桐子中参与赤霉素合成代谢及信号转导的大多数基因与蓖麻和葡萄同源基因的相似度更高。  相似文献   

9.
棉纤维细胞的快速极性生长与植物激素的合成、细胞膜和细胞壁的合成、细胞壁的松弛和延展密切相关。其中,植物激素作为调控因子一直是纤维发育领域研究的热点。该文对植物激素乙烯、油菜素内酯、赤霉素、活性氧以及超长链脂肪酸的生物合成及信号转导途径进行了综述,并介绍了它们在棉纤维发生发育过程中的作用机理及相互关系的最新研究进展,为深入阐明纤维细胞伸长的调控规律,最终提高棉纤维产量和品质提供理论依据。  相似文献   

10.
赤霉素信号转导与棉纤维的分子发育   总被引:1,自引:0,他引:1  
王荣  崔百明  彭明  张根发 《遗传》2007,29(3):276-282
赤霉素(Gas)作为一种高效能的植物生长调节物质对棉纤维的分化和发育有着非常重要的影响, 但是, 一直以来有关赤霉素与棉纤维分化和发育的分子机制的研究还很少。文章论述了近年来GA信号组分、转导途径的分子生物学研究进展以及GA与棉纤维分子发育的相关研究成果, 旨在为揭示赤霉素调控棉纤维分化和发育的分子机制以及改善棉纤维品质的棉花育种工作提供新的思路。  相似文献   

11.
12.
Brassinosteroid regulates fiber development on cultured cotton ovules   总被引:15,自引:0,他引:15  
Our current understanding of the role of phytohormones in the development of cotton fibers is derived largely from an amenable culture system in which cotton ovules, collected on the day of anthesis, are floated on liquid media. Under these conditions, supplemental auxin and gibberellin were found to promote fiber initiation and elongation. More recently, addition of low concentrations of the brassinosteroid brassinolide (BL) were also found to promote fiber elongation while a brassinosteroid biosynthesis inhibitor brassinazole2001 (Brz) inhibited fiber development. In order to elucidate the role of brassinosteroid in cotton fiber development further, we have performed a more detailed analysis of the effects of these chemicals on cultured cotton ovules. Our results confirm that exogenous BL promotes fiber elongation while treatment with Brz inhibits it. Furthermore, treatment of cotton floral buds with Brz results in the complete absence of fiber differentiation, indicating that BR is required for fiber initiation as well as elongation. Expression of fiber genes associated with cell elongation increased in ovules treated with BL and was suppressed by Brz treatment, establishing a correlation between brassinosteroid-regulated gene expression and fiber elongation. These results establish a clear connection between brassinosteroid and fiber development and open the door for genetic analysis of cotton development through direct modification of the brassinosteroid signal transduction pathway.  相似文献   

13.
An improved procedure for quantitation of cotton fiber development, the “stain-destain” method, is reported. Toluidine blue 0 was used to selectively stain fibers subsequently destained in an acid-alcohol solution. Absorbance of the dyecontaining destaining solution was used as a measure of fiber development, and expressed in terms of total fiber units (TFU), one OD unit at 624 nm having been assigned the value of one TFU. Optimum conditions for the procedure, including staining and destaining times and solution to ovule ratios were determined: (1) 20 ovules with associated fibers stained for 15 sec in 80 ml 0.018% toluidine blue O, (2) nonabsorbed dye removed by 60 sec wash, (3) ovuls destajned in 100 ml glacial acetic acid-ethanol-water (10:95:5), (4) absorbance determined after one hr destaining. The procedure is deemed accurate and precise for the purpose intended—quadtation of fiber development as modified by phytohormones or other treatments. Data are shown correlating TFU with fiber length through 14 days postanthesis and an example is given in which the method was used to determine the effect of combined application of gibberellic acid and indoleacetic acid on in vitro cotton fiber development.  相似文献   

14.
以新疆棉区优质棉品种‘新陆早16号’、品质中等品种‘新陆早10号’和‘新陆早13号’以及品质较差品种‘02-DB’为材料,测定了棉纤维发育过程中内源生长素(IAA)、赤霉素(GA4)、玉米素(ZR)和脱落酸(ABA)含量和主要纤维品质指标的变化,分析内源激素含量变化与纤维品质形成的关系。结果表明:不同品种棉花纤维发育中纤维内源激素变化趋势基本相似,其差异主要表现在IAA、GA4、ZR和ABA的含量大小及峰值出现的时间方面。‘新陆早16号’在纤维发育前期有较高IAA、GA4、ZR含量和较低的ABA含量,表现出纤维伸长速率较高、快速伸长时期较长等特征;而且在次生壁加厚期ZR峰值出现较早,有利于棉纤维成熟,从而表现出较优的纤维品质。‘02-DB’在纤维发育前期由于ABA含量较高影响了纤维伸长速率和快速伸长期的时间,同时后期ZR峰值出现晚,使纤维发育受到影响,而最终品质较差。可见,在棉花纤维伸长期IAA、GA4、ZR含量高而ABA含量低、次生壁加厚期ZR峰值出现早则有利于优质棉纤维形成。  相似文献   

15.
The contents of chlorophylls, carotenoids, flavonoids and phytohormones (IAA, ABA and other inhibitors) were determined in green and albino seedlings of cotton (Gossypium hirsutum L.) and pea (Pisum sativum L.) The growth of green and albino seedlings during 1 –2 weeks was similar. The green and albino seedlings do not differ remarkably in phytohormonal content and in the flavonoid concentration. In the etiolated seedlings of green and albino forms the content of flavonoids was rather decreased.  相似文献   

16.
17.
18.
19.
Gibberellin (GA) and jasmonate (JA) are two types of phytohormones that play important roles during stamen development. For example, Arabidopsis plants deficient in either of GA or JA develop short stamens. An apparent question to ask is whether GA action and JA action during stamen filament development are independent of each other or are in a hierarchy. Recent studies showed that GA modulates the expression of genes essential for JA biosynthesis to promote JA production and high levels of JA will induce the expression of three MYB genes MYB21, MYB24 and MYB57. These three MYB genes are crucial factors for the normal development of stamen filament in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号