首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Interactions of stromal and tumor cells with the extracellular matrix may regulate expression of proteases including the lysosomal proteases cathepsins B and D. In the present study, we determined whether the expression of these two proteases in human breast fibroblasts was modulated by interactions with the extracellular matrix component, collagen I. Breast fibroblasts were isolated from non-malignant breast tissue as well as from tissue surrounding malignant human breast tumors. Growth of these fibroblasts on collagen I gels affected cell morphology, but not the intracellular localization of vesicles staining for cathepsin B or D. Cathepsins B and D levels (mRNA or intracellular protein) were not affected in fibroblasts growing on collagen I gels or plastic, nor was cathepsin D secreted from these cells. In contrast, protein expression and secretion of cathepsin B, primarily procathepsin B, was induced by growth on collagen I gels. The induced secretion appeared to be mediated by integrins binding to collagen I, as inhibitory antibodies against alpha(1), alpha(2), and beta(1) integrin subunits prevented procathepsin B secretion from fibroblasts grown on collagen. In addition, procathepsin B secretion was induced when cells were plated on beta(1) integrin antibodies. To our knowledge, this is the first examination of cathepsin B and D expression and localization in human breast fibroblasts and their regulation by a matrix protein. Secretion of the cysteine protease procathepsin B from breast fibroblasts may have physiological and pathological consequences, as proteases are required for normal development and for lactation of the mammary gland, yet can also initiate and accelerate the progression of breast cancer.  相似文献   

2.
Stromal fibroblasts actively participate in normal mammary gland homeostasis and in breast carcinoma growth and progression by secreting paracrine factors; however, little is known about the identity of paracrine mediators in individual patients. The purpose of this study was to characterize paracrine signaling pathways between breast carcinoma cells and breast carcinoma-associated fibroblasts (CAF) or normal mammary fibroblasts (NF), respectively. CAF and NF were isolated from breast carcinoma tissue samples and adjacent normal mammary gland tissue of 28 patients. The fibroblasts were grown in 3D collagen gel co-culture with T47D human breast carcinoma cells and T47D cell growth was measured. CAF stimulated T47D cell growth to a significantly greater degree than NF. We detected a considerable inter-individual heterogeneity of paracrine interactions but identified FGF2, HB-EGF, heparanase-1 and SDF1 as factors that were consistently responsible for the activity of carcinoma-associated fibroblasts. CAF from low-grade but not high-grade carcinomas required insulin-like growth factor 1 and transforming growth factor beta 1 to stimulate carcinoma growth. Paradoxically, blocking of membrane-type 1 matrix metalloprotease stimulated T47D cell growth in co-culture with NF. The results were largely mirrored by treating the fibroblasts with siRNA oligonucleotides prior to co-culture, implicating the fibroblasts as principal production site for the secreted mediators. In summary, we identify a paracrine signaling network with inter-individual commonalities and differences. These findings have significant implications for the design of stroma-targeted therapies.  相似文献   

3.
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C(19) androgens to C(18) estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE(2) increases intracellular cAMP levels and stimulates estrogen biosynthesis, and our recent studies have shown a strong linear association between CYP19 expression and the sum of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) expression in breast cancer specimens. Knowledge of the signaling pathways that regulate the expression and enzyme activity of aromatase and cyclooxygenases (COXs) in stromal and epithelial breast cells will aid in understanding the interrelationships of these two enzyme systems and potentially identify novel targets for regulation. The effects of epidermal growth factor (EGF), transforming growth factor-beta (TGFbeta), and tetradecanoyl phorbol acetate (TPA) on aromatase and COXs were studied in primary cultures of normal human adipose stromal cells and in cell cultures of normal immortalized human breast epithelial cells MCF-10F, estrogen-responsive human breast cancer cells MCF-7, and estrogen-unresponsive human breast cancer cells MDA-MB-231. Levels of the constitutive COX isozyme, COX-1, were not altered by the various treatments in the cell systems studied. In breast adenocarcinoma cells, EGF and TGFbeta did not alter COX-2 levels at 24h, while TPA induced COX-2 levels by 75% in MDA-MB-231 cells. EGF and TPA in MCF-7 cells significantly increased aromatase activity while TGFbeta did not. In contrast to MCF-7 cells, TGFbeta and TPA significantly increased activity in MDA-MB-231 cells, while only a modest increase with EGF was observed. Untreated normal adipose stromal cells exhibited high basal levels of COX-1 but low to undetectable levels of COX-2. A dramatic induction of COX-2 was observed in the adipose stromal cells by EGF, TGFbeta, and TPA. Aromatase enzyme activity in normal adipose stromal cells was significantly increased by EGF, TGFbeta and TPA after 24h of treatment. In summary, the results of this investigation on the effects of several paracrine and/or autocrine signaling pathways in the regulation of expression of aromatase, COX-1, and COX-2 in breast cells has identified more complex relationships. Overall, elevated levels of these factors in the breast cancer tissue microenvironment can result in increased aromatase activity (and subsequent increased estrogen biosynthesis) via autocrine mechanisms in breast epithelial cells and via paracrine mechanisms in breast stromal cells. Furthermore, increased secretion of prostaglandins such as PGE(2) from constitutive COX-1 and inducible COX-2 isozymes present in epithelial and stromal cell compartments will result in both autocrine and paracrine actions to increase aromatase expression in the tissues.  相似文献   

4.
Summary In the mammary gland, mesenchymal-epithelial interactions are of paramount importance during normal and tumoral developments. We have studied the paracrine growth regulation of a variety of breast epithelial cells in coculture with normal or pathological breast fibroblasts. Two models of coculture were used in which the two cell types were seeded and grown, either together in microchamber slides or separated by a microporous membrane. Under these two conditions, all fibroblasts were shown to stimulate the proliferation of the hormono-responsive breast carcinoma MCF-7 cell line, suggesting that cell contacts were not indispensable for the paracrine stimulation of MCF-7 cell growth by fibroblasts. Moreover, in the Transwell coculture system, the proliferation of a variety of other breast carcinoma cells (MDA-MB231, T47D, and BT-20) was also stimulated by fibroblasts. However, the amplitude of the proliferative response seemed to be dependent on the carcinoma cell line considered. Moreover, the proliferative response of normal mammary epithelial cells to the presence of fibroblasts was shown to be significantly higher than the tumor cell response. The nature of the tissue of fibroblast origin, normal or pathological, did not influence the growth response of the epithelial cells. In this study, we thus demonstrate that fibroblasts are able to stimulate the proliferation of normal and carcinoma cells through paracrine exchange mechanisms. We also conclude that the target epithelial cell phenotype will essentially determine the extent of the proliferative response.  相似文献   

5.
The mammary gland is composed of a diverse array of cell types that form intricate interaction networks essential for its normal development and physiologic function. Abnormalities in these interactions play an important role throughout different stages of tumorigenesis. Branching ducts and alveoli are lined by an inner layer of secretory luminal epithelial cells that produce milk during lactation and are surrounded by contractile myoepithelial cells and basement membrane. The surrounding stroma comprised of extracellular matrix and various cell types including fibroblasts, endothelial cells, and infiltrating leukocytes not only provides a scaffold for the organ, but also regulates mammary epithelial cell function via paracrine, physical, and hormonal interactions. With rare exceptions breast tumors initiate in the epithelial compartment and in their initial phases are confined to the ducts but this barrier brakes down with invasive progression because of a combination of signals emitted by tumor epithelial and various stromal cells. In this article, we overview the importance of cellular interactions and microenvironmental signals in mammary gland development and cancer.The mammary gland is composed of a combination of multiple cell types that together form complex interaction networks required for the proper development and functioning of the organ. The branching milk ducts are formed by an outer myoepithelial cell layer producing the basement membrane (BM) and an inner luminal epithelial cell layer producing milk during lactation. The ducts are surrounded by the microenvironment composed of extracellular matrix (ECM) and various stromal cell types (e.g., endothelial cells, fibroblasts, myofibroblasts, and leukocytes). Large amount of data suggest that cell-cell and cell-microenvironment interactions modify the proliferation, survival, polarity, differentiation, and invasive capacity of mammary epithelial cells. However, the molecular mechanisms underlying these effects are poorly understood. The purification and comprehensive characterization of each cell type comprising normal and neoplastic human breast tissue combined with hypothesis testing in cell culture and animal models are likely to improve our understanding of the role these cells play in the normal functioning of the mammary gland and in breast tumorigenesis. In this article, we overview cellular and microenvironmental interactions that play important roles in the normal functioning of the mammary gland and their abnormalities in breast cancer.  相似文献   

6.
Cellular growth and collagen biosynthesis were compared in dermal calf fibroblasts cultured on plastic or on a reconstituted basement membrane gel, termed matrigel. This matrix, extracted from Engelbreth-Holm-Swarm tumors, consists mainly of laminin, entactin, type IV collagen, and heparan sulfate proteoglycan. The multiplication rate of fibroblasts grown on matrigel was stimulated compared to that of monolayered cells cultured on plastic, and these cells formed multilayers after 4 days. Protein and collagen biosynthesis was reduced in fibroblasts cultured on matrigel. A higher proportion of the newly synthesized collagen (40%) was incorporated to the extracellular matrix in cultures grown on matrigel than in those grown on plastic (14%). Type III collagen was the preferential collagen type deposited on matrigel, and the ratio of type III:type I collagens secreted in the medium was also slightly higher in cultures grown on matrigel. Partially processed collagen was more abundant in fibroblasts grown on matrigel than in cells cultured on plastic. Finally, cells grown on matrigel exhibited a higher catabolic activity than cells grown on plastic. In this experimental model, the reconstituted basement-membrane matrix seems to influence the activities of fibroblasts significantly.  相似文献   

7.
8.
R Montesano  G Schaller  L Orci 《Cell》1991,66(4):697-711
We have designed an in vitro system in which Madin-Darby canine kidney (MDCK) epithelial cells are cocultured in collagen gels with fibroblasts under conditions precluding heterocellular contact. Using this experimental approach, we have obtained evidence that fibroblast-derived soluble factors play a crucial role in the control of epithelial morphogenesis. First, MDCK cells suspended alone in collagen gels form spherical cysts, whereas in the presence of fibroblasts they form branching tubules. Second, MDCK cells grown as a monolayer on fibroblast-containing collagen gels invade the underlying matrix, within which they form a network of tubules. Third, fibroblast-conditioned medium mimics the effects of coculture by eliciting tubulogenesis by MDCK cells. These results demonstrate the involvement of diffusible paracrine factors in morphogenetic epithelial-mesenchymal interactions and provide a strategy for their molecular characterization.  相似文献   

9.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.  相似文献   

10.
Tumor stroma plays an important role in cancer development. In a variety of tumors, such as breast carcinomas, a desmoplastic response, characterized by stromal fibroblast and collagen accumulation, is observed having synergistic effects on tumor progression. However, the effect of known anticancer drugs on stromal cells has not been thoroughly investigated. Imatinib mesylate is a selective inhibitor of several protein tyrosine kinases, including the receptor of platelet-derived growth factor, an important mediator of desmoplasia. Recently, we have shown that imatinib inhibits the growth and invasiveness of human epithelial breast cancer cells. Here, we studied the effect of imatinib on the proliferation and collagen accumulation in breast stromal fibroblasts. We have shown that it blocks the activation of the extracellular signal-regulated kinase and Akt signaling pathways and up-regulates cyclin-dependent kinase inhibitor p21(WAF1), leading to the inhibition of fibroblast proliferation, by arresting them at the G(0)/G(1) phase of the cell cycle. Imatinib inhibits more potently the platelet-derived growth factor-mediated stimulation of breast fibroblast proliferation. By using specific inhibitors, we have found that this is due to the inhibition of the Akt pathway. In addition, imatinib inhibits fibroblast-mediated collagen accumulation. Conventional and quantitative PCR analysis, as well as gelatin zymography, indicates that this is due to the down-regulation of mRNA synthesis of collagen I and collagen III-the main collagen types in breast stroma-and not to the up-regulation or activation of collagenases matrix metalloproteinase 2 and matrix metalloproteinase 9. These data indicate that imatinib has an antifibrotic effect on human breast stromal fibroblasts that may inhibit desmoplastic reaction and thus tumor progression.  相似文献   

11.
True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co‐culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non‐macromastic epithelial cells when co‐cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia‐derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co‐culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co‐cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy.  相似文献   

12.
Summary We have established and partially characterized a spontaneously immortalized bovine mammary epithelial cell line, designated HH2a. The cells express the gene encoding for mammary derived growth inhibitor (MDGI) when grown on released collagen gels in the presence of lactogenic hormones. This is the first report of a cell line that expresses MDGI. Immunohistochemical studies showed that HH2a cells contain keratin intermediate filaments and desmosomes. When plated on confluent monolayer of live fibroblasts, HH2a cells extensively contacted with fibroblasts. When embedded in the collagen gels, they rearranged themselves to produce three-dimensional duct-like outgrowths extending into the matrix. The HH2a cell line should be useful in investigations of the roles of cell-cell and cell-extracellular interactions in regulation of breast epithelial cell proliferation, and of the hormonal regulation of MDGI gene expression.  相似文献   

13.
Extracellular matrix regulation of intestinal epithelial differentiation may affect development, differentiation during migration to villus tips, healing, inflammatory bowel disease, and malignant transformation. Cell culture studies of intestinal epithelial biology may also depend on the matrix substrate used. We evaluated matrix effects on differentiation and proliferation in human intestinal Caco-2 epithelial cells, a model for intestinal epithelial differentiation. Proliferation, brush border enzyme specific activity, and spreading were compared in cells cultured on tissue culture plastic with interstitial collagen I and the basement membrane constituents collagen IV and laminin. Each matrix significantly increased alkaline phosphatase, dipeptidyl peptidase, lactase, sucrase-isomaltase, and cell spreading in comparison to plastic. However, the basement membrane proteins collagen IV and laminin further promoted all four brush border enzymes but inhibited spreading compared to collagen I. Proliferation was most rapid on type I collagen and slowest on laminin and tissue culture plastic. Basement membrane matrix proteins may promote intestinal epithelial differentiation and inhibit proliferation compared with interstitial collagen I.  相似文献   

14.
Aromatase expression and its localization in human breast cancer   总被引:3,自引:0,他引:3  
Aromatization or in situ estrogen production by aromatase has been considered to play an important role in the development of human breast carcinoma. In the human breast, aromatase overexpression is observed in the stromal or interstitial cells of the carcinoma, especially at the sites of frank invasion and/or adipose tissue. Transplantation experiments in the nude mouse employing MCF-7 and/or SF-TY human fibroblast cell lines revealed that aromatase activity and expression were much higher in the tumour with MCF-7 and SF-TY than that with MCF-7 alone. Aromatase overexpression in human breast carcinoma tissue is considered to occur as a result of carcinomastromal cell interactions, i.e. paracrine communication between stromal and carcinoma cells. Aromatase overexpression is correlated with the malignant phenotype in the human breast, but not with stage, age, clinical stages, clinical course, or proliferative activity of breast carcinoma. Aromatase overexpression may be correlated with development, rather than the biological behaviour of breast malignancy. Aromatase overexpression is not necessarily correlated with expression of 17β-hydroxysteroid dehydrogenase type 1, which converts estrone to estradiol and estrogen receptor. Different mechanisms may be involved in the regulation of expression of these two important estrogen-metabolizing enzymes and estrogen receptor in human breast cancer. Aromatase overexpression in intratumoral stromal cells was much more frequently detected in male breast cancer than in female counterparts, which confers a growth advantage on cancer cells in a male hormonal environment with low serum estrogen levels.  相似文献   

15.
Ghosh S  Kang T  Wang H  Hu Y  Li R 《Steroids》2011,76(8):797-801
Evidence that aromatase expression in tumor-associated breast stroma is elevated, provides a rationale for use of aromatase inhibitors (AIs) in breast cancer treatment. However, regulation of local aromatase expression in cancer-free breast stroma is poorly understood. Recent clinical work indicates that stromal cells in dense breast tissue tend to express higher levels of aromatase than their counterpart from non-dense tissue. Consistent with the clinical observation, our cell culture-based study indicated that cell density, cell shape, and extracellular matrix (ECM) significantly induced stromal aromatase expression via a distinct signal transduction pathway. In addition, we identified a number of cell surface markers that are commonly associated with aromatase-expressing stromal cells. As mammographic density is one of the strongest and most prevalent risk factors for breast cancer, these findings provide a potential mechanistic link between alterations in tissue composition of dense breast tissue and increased stromal aromatase expression. Further exploration of the in vitro model system may advance understanding of an important problem in breast cancer biology.  相似文献   

16.
Normal human skin fibroblasts were grown in a three-dimensional collagen gel or in monolayer in the presence or absence of high molecular weight hyaluronan (HA) to assess the influence of extracellular HA on cell-matrix interactions. HA incorporated into the collagen gel or added to the culture medium did not modify lattice retraction with time. The effect was independent from HA molecular weight (from 7.5 x 10(5) to 2.7 x 10(6) Da) and concentration (from 0.1 up to 1 mg/ml). HA did not affect shape and distribution of fibroblasts within the gel, whereas it induced the actin filaments to organise into thicker cables running underneath the plasma membrane. The same phenomenon was observed in fibroblasts grown in monolayer. By contrast, vimentin cytoskeleton and cell-substrate focal adhesions were not modified by exogenous HA. The number of fibroblasts attached to HA-coated dishes was always significantly lower compared to plastic and to collagen type I-coated plates. By contrast, adhesion was not affected by soluble HA added to the medium nor by anti-CD44 and anti-RHAMM-IHABP polyclonals. After 24-h seeding on collagen type I or on plastic, cells were large and spread. Conversely, cells adherent to HA-coated surfaces were long, thin and aligned into rows; alcian blue showed that cells were attached to the plastic in between HA bundles. Therefore, normal human skin fibroblasts exhibit very scarce, if any, adhesion to matrix HA, either soluble or immobilised. Moreover, even at high concentration, HA molecules do not exert any visco-mechanical effect on lattice retraction and do not interfere with fibroblast-collagen interactions nor with focal adhesion contacts of fibroblasts with the substrate. This is probably relevant in organogenesis and wound repair. By contrast, HA greatly modifies the organisation of the actin cytoskeleton, suggesting that CD44-mediated signal transduction by HA may affect cell locomotion and orientation, as indicated by the fusiform shape of fibroblasts grown in the presence of immobilised HA. A role of HA in cell orientation could be relevant for the deposition of collagen fibrils in regeneration and tissue remodelling.  相似文献   

17.
Along with degradation of type IV collagen in basement membrane, destruction of the stromal collagens, types I and III, is an essential step in the invasive/metastatic behavior of tumor cells, and it is mediated, at least in part, by interstitial collagenase 1 (matrix metalloproteinase 1 (MMP-1)). Because A2058 melanoma cells produce substantial quantities of MMP-1, we used these cells as models for studying invasion of type I collagen. With a sensitive and quantitative in vitro invasion assay, we monitored the ability of these cells to invade a matrix of type I collagen and the ability of a serine proteinase inhibitor and all-trans-retinoic acid to block invasion. Although these cells produce copious amounts of MMP-1, they do not invade collagen unless they are co-cultured with fibroblasts or with conditioned medium derived from fibroblasts. Our studies indicate that a proteolytic cascade that depends on stromal/tumor cell interactions facilitates the ability of A2058 melanoma cells to invade a matrix of type I collagen. This cascade activates latent MMP-1 and involves both serine proteinases and MMPs, particularly stromelysin 1 (MMP-3). All-trans-retinoic acid (10(-6) M) suppresses the invasion of tumor cells by several mechanisms that include suppression of MMP synthesis and an increase in levels of tissue inhibitor of metalloproteinases 1 and 2. We conclude that invasion of stromal collagen by A2058 melanoma cells is mediated by a novel host/tumor cell interaction in which a proteolytic cascade culminates in the activation of pro-MMP-1 and tumor cell invasion.  相似文献   

18.
This study evaluates the effects of gingival fibroblasts, type I collagen and autocrine/paracrine elements on cytokine expression in paired primary and metastatic human squamous cell carcinoma (HNSCC) cell lines. Additionally, the effects of IL-1α, IL-1β, IL-6, TNF-α, TGF-β and HGF on MMPs and cell invasion were investigated. RT-PCR results indicated the presence of mRNAs for IL-1α, IL-1β, IL-6, TNF-α, and TGF-β in primary and metastatic HNSCC cell lines but high expression of cytokines was not a prerequisite for metastatic cancer cells. HGF mRNA was not detected in the cancer cell lines. Co-culturing of HNSCC cells with fibroblasts caused increases in cytokine expression. Type I collagen and conditioned media derived from HNSCC cells or fibroblasts enhanced cytokine expression in the cancer cells. Cytokines also enhanced MMP-2 and MMP-9 enzymatic activities as well as HNSCC cell invasion. Our findings suggest that the interactions between cancer cells, the extracellular matrix and fibroblasts, as mediated by cytokines, play important roles in the progression of HNSCC.  相似文献   

19.
Alveolar type II epithelial cells rapidly lose characteristics of differentiated function when cultured on plastic dishes. We have attempted to circumvent this problem by culturing type II cells under conditions that might better reproduce their environment in vivo. Cell-matrix interactions were studied by culturing isolated adult rat type II cells on Engelbreth-Holm-Swarm (EHS) tumor basement membrane. Aggregates of type II cells formed on the surface of the matrix during 4 days in culture. Microscopic examination of these aggregates revealed cuboidal cells that retained more characteristics of differentiated type II cells than did cells cultured on plastic. Type II cells cultured on EHS matrix incorporated a higher percentage of acetate into phosphatidylcholine (PC) than did cells on plastic, and a higher percentage of this PC was saturated. Phosphatidylglycerol (PG) synthesis by these cells was no different from that seen in cells on plastic. The effects of cell-cell interactions and cell shape were evaluated by culturing type II cells on feeder layers that in turn were grown on collagen gels. The feeder layer cells included fetal rat lung fibroblasts, adult rat lung fibroblasts, fetal rat skin fibroblasts, bovine aortic endothelial cells, and rat mammary tumor epithelial cells. One-half of the gels remained attached to the culture dish and one-half of the gels were detached after 24 h and allowed to float free in the medium. Type II cells grown in association with any of the attached feeder layers became flattened and lost their differentiated phenotype. These cells incorporated no greater percentage of acetate into PC than did cells on plastic. Saturated PC synthesis was modestly increased. PG synthesis declined in parallel with that seen in cells cultured on plastic. Type II cells cultured on feeder layers that were detached assumed their native cuboidal shape and also exhibited many morphological characteristics of differentiated function. These cells incorporated a significantly greater percentage of acetate into PC compared to cells on either plastic or attached feeder layers. Saturated PC synthesis also increased markedly. These cells, however, incorporated no greater percentage of acetate into PG than did cells on plastic or attached feeder layers. These data suggest an important role for cell shape and cell-matrix interactions and maintenance of type II cell differentiation. The effects of cell-cell interactions, while beneficial, appear to be non-specific.  相似文献   

20.
Aromatase and cyclooxygenases: enzymes in breast cancer   总被引:8,自引:0,他引:8  
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE2 increases intracellular cAMP levels and stimulates estrogen biosynthesis, and previous studies in our laboratories have shown a strong linear association between aromatase (CYP19) expression and expression of the cyclooxygenases (COX-1 and COX-2) in breast cancer specimens. To further investigate the pathways regulating COX and CYP19 gene expression, studies were performed in normal breast stromal cells, in breast cancer cells from patients, and in breast cancer cell lines using selective pharmacological agents. Enhanced COX enzyme levels results in increased production of prostaglandins, such as PGE2. This prostaglandin increased aromatase activity in breast stromal cells, and studies with selective agonists and antagonists showed that this regulation of signaling pathways occurs through the EP1 and EP2 receptor subtypes. COX-2 gene expression was enhanced in breast cancer cell lines by ligands for the various peroxisome proliferator-activated receptors (PPARs), and differential regulation was observed between hormone-dependent and -independent breast cancer cells. Thus, the regulation of both enzymes in breast cancer involves complex paracrine interactions, resulting in significant consequences on the pathogenesis of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号