首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
DNA methylation and histone acetylation are major epigenetic modifications in gene silencing. In our previous research, we found that the methylated oligonucleotide (SurKex) complementary to a region of promoter of survivin could induce DNA methylation in a site-specific manner leading to survivin silencing. Here, we further studied the role of histone acetylation in survivin silencing and the relationship between histone acetylation and DNA methylation.First we observed the levels of histone H4 and H4K16 acetylation that were decreased after SurKex treatment by using the chromatin immunoprecipitation (ChIP) assay. Next, we investigated the roles of histone acetylation and DNA methylation in survivin silencing after blockade of histone deacetylation with Trichostatin A (TSA). We assessed survivin mRNA expression by RT-PCR, measured survivin promoter methylation by bisulfite sequencing and examined the level of histone acetylation by the ChIP assay. The results showed that histone deacetylation blocked by TSA reversed the effects of SurKex on inhibiting the expression of survivin mRNA, inducing a site-specific methylation on survivin promoter and decreasing the level of histone acetylation. Finally, we examined the role of histone acetylation in the expression of DNA methyltransferase 1 (DNMT1) mRNA. The results showed that histone deacetylation blocked by TSA reversed the increasing effect of histone deacetylation on the expression of survivin mRNA. This study suggests that histone deacetylation guides SurKex-induced DNA methylation in survivin silencing possibly through increasing the expression of DNMT1 mRNA.  相似文献   

3.
Ding X  Wang Y  Zhang D  Wang Y  Guo Z  Zhang Y 《Theriogenology》2008,70(4):622-630
Limited success of somatic cell nuclear transfer is attributed to incomplete reprogramming of transferred nuclei. The objective was to determine if 5-aza-2'-deoxycytidine (5-aza-dC) and trichostatin A (TSA) promoted reprogramming and improved development. Relative to untreated controls, treatment of donor cells, cloned embryos, and continuous treatment of both donor cells and cloned embryos with a combination of 0.01microM 5-aza-dC and 0.05microM TSA significantly increased the blastocyst rate (11.9% vs 31.7%, 12.4% vs 25.6%, and 13.3% vs 38.4%, respectively) and total cell number (73.2 vs 91.1, 75.2 vs 93.7, and 74.6 vs 96.7). Moreover, blastocyst rate and inner cell mass (ICM) cell number of embryos continuously exposed to both reagents were significantly higher than that of a TSA-treated group (38.4% vs 23.9% and 27.4 vs 18.2). The DNA methylation level of 2-cell embryos was decreased significantly, whereas the histone acetylation level increased dramatically after donor cell treatment and continuous treatment with both reagents. However, these epigenetic features of cloned blastocysts were not significantly different than the untreated control group. Following embryo treatment, DNA methylation and histone acetylation levels of cloned blastocysts were unchanged, except for the group given 0.5microM TSA (acetylation level was significantly increased, but development potential was reduced). In conclusion, development of cloned bovine embryos was enhanced by 5-aza-dC and TSA; furthermore, the combination was more effective than either one alone.  相似文献   

4.
5.
Blocking histone deacetylation with trichostatin A (TSA) or blocking cytosine methylation using 5-aza-2'-deoxycytosine (aza-dC) can derepress silenced genes in multicellular eukaryotes, including animals and plants. We questioned whether DNA methylation and histone deacetylation overlap in the regulation of endogenous plant genes by monitoring changes in expression of approximately 7800 Arabidopsis thaliana genes following treatment with azadC, TSA, or both chemicals together. RNA levels for approximately 4% of the genes were reproducibly changed 3-fold or more by at least one treatment. Distinct subsets of genes are up-regulated or down-regulated in response to aza-dC, TSA, or simultaneous treatment with both chemicals, with little overlap among subsets. Surprisingly, the microarray data indicate that TSA and aza-dC are often antagonistic rather than synergistic in their effects. Analysis of green fluorescent protein transgenic plants confirmed this finding, showing that TSA can block the up-regulation of silenced green fluorescent protein transgenes in response to aza-dC or a ddm1 (decrease in DNA methylation 1) mutation. Our results indicate that global inhibition of DNA methylation or histone deacetylation has complex, nonredundant effects for the majority of responsive genes and suggest that activation of some genes requires one or more TSA-sensitive deacetylation events in addition to cytosine demethylation.  相似文献   

6.
Reprogramming impairment of DNA methylation may be partly responsible for the low efficiency in somatic cell nuclear transfer. In this study, bovine fibroblast cells were transfected with enhancer green fluorescence protein (eGFP), and then treated with a histone-deacetylase inhibitor, trichostatin A (TSA). The results showed that the effect of TSA on transfected cells was dose dependent. When the TSA concentration was over 5 ng/ml, cell proliferation was significantly inhibited. The majority of the cells died when TSA reached 100 ng/ml (P < 0.01). The number of cells in the S phase was significantly decreased in the 5- to 50-ng/ml TSA-treated groups, while the majority of the cells were at the G0/G1 phases. The number of eGFP-expressed cells were approximately twofold higher in 25-ng/ml (30.5%) and 50-ng/ml (29.5%) TSA groups than the control (15.0%). Reduced DNA methylation and improved histone acetylation were observed when the cells were treated with 10 to 50 ng/ml of TSA. Transfer of the TSA-treated cells to enucleated recipient oocytes resulted in similar cleavage rates among the experimental groups and the control. Cells treated with 50 ng/ml of TSA resulted in significantly lower blastocyst development (9.9%) than the other experimental and the control groups (around 20%). Analysis of the putative blastocysts showed that 86.7% of the embryos derived from TSA-treated cells were eGFP positive, which was higher than that from untreated cells (68.8%). In conclusion, treatment of transfected cells with TSA decreased the genome DNA methylation level, increased histone acetylation, and eGFP gene expression was activated. Donor cells with reduced DNA methylation did not improve subsequent cloned embryo development; however, transgene expression was improved in cloned embryos.  相似文献   

7.
Apoptosis in the early bovine embryo   总被引:7,自引:0,他引:7  
  相似文献   

8.
Wu X  Li Y  Li GP  Yang D  Yue Y  Wang L  Li K  Xin P  Bou S  Yu H 《Animal biotechnology》2008,19(4):211-224
Reprogramming impairment of DNA methylation may be partly responsible for the low efficiency in somatic cell nuclear transfer. In this study, bovine fibroblast cells were transfected with enhancer green fluorescence protein (eGFP), and then treated with a histone-deacetylase inhibitor, trichostatin A (TSA). The results showed that the effect of TSA on transfected cells was dose dependent. When the TSA concentration was over 5 ng/ml, cell proliferation was significantly inhibited. The majority of the cells died when TSA reached 100 ng/ml (P < 0.01). The number of cells in the S phase was significantly decreased in the 5- to 50-ng/ml TSA-treated groups, while the majority of the cells were at the G0/G1 phases. The number of eGFP-expressed cells were approximately twofold higher in 25-ng/ml (30.5%) and 50-ng/ml (29.5%) TSA groups than the control (15.0%). Reduced DNA methylation and improved histone acetylation were observed when the cells were treated with 10 to 50 ng/ml of TSA. Transfer of the TSA-treated cells to enucleated recipient oocytes resulted in similar cleavage rates among the experimental groups and the control. Cells treated with 50 ng/ml of TSA resulted in significantly lower blastocyst development (9.9%) than the other experimental and the control groups (around 20%). Analysis of the putative blastocysts showed that 86.7% of the embryos derived from TSA-treated cells were eGFP positive, which was higher than that from untreated cells (68.8%). In conclusion, treatment of transfected cells with TSA decreased the genome DNA methylation level, increased histone acetylation, and eGFP gene expression was activated. Donor cells with reduced DNA methylation did not improve subsequent cloned embryo development; however, transgene expression was improved in cloned embryos.  相似文献   

9.
We investigated the effects of agents that induce reelin mRNA expression in vitro on the methylation status of the human reelin promoter in neural progenitor cells (NT2). NT2 cells were treated with the histone deacetylase inhibitors, trichostatin A (TSA) and valproic acid (VPA), and the methylation inhibitor aza-2'-deoxycytidine (AZA) for various times. All three drugs reduced the methylation profile of the reelin promoter relative to untreated cells. The acetylation status of histones H3 and H4 increased following treatment with VPA and TSA at times as short as 15 min following treatment; a result consistent with the reported mode of action of these drugs. Chromatin immunoprecipitation experiments showed that these changes were accompanied by changes occurring at the level of the reelin promoter as well. Interestingly, AZA decreased reelin promoter methylation without concomittantly increasing histone acetylation. In fact, after prolonged treatments with AZA, the acetylation status of histones H3 and H4 decreased relative to untreated cells. We also observed a trend towards reduced methylated H3 after 18 h treatment with TSA and VPA. Our data indicate that while TSA and VPA act to increase histone acetylation and reduce promoter methylation, AZA acts only to decrease the amount of reelin promoter methylation.  相似文献   

10.
Apoptosis is common during spermatogenesis. Here, it was tested whether apoptosis could be induced in sperm after ejaculation. There were several lines of evidence to indicate that sperm are resistant to induction of apoptosis. First, incubation of bull sperm at temperatures characteristic of normothermia (38.5 °C) or heat shock (40 and 41 °C) for 4 h did not increase the proportion of sperm positive for the TUNEL reaction. There was also no reduction in mitochondrial polarity caused by exposure to 40 or 41 °C. Incubation at 38.5 °C (least-squares mean ± SEM = 4.0 ± 1.4%), 40 °C (6.2 ± 1.4%), and 41 °C (7.0 ± 1.4%) for 24 h did increase the proportion of sperm that were TUNEL positive slightly as compared to non-incubated control sperm (1.0 ± 1.4%). However, the increase in TUNEL labeling was not affected by incubation temperature and occurred even in the presence of the group II caspase inhibitor, z-DEVD-fmk. In addition, exposure of bull sperm to carbonyl cyanide 3-chlorophenylhydrazone (CCCP), which depolarizes mitochondrial membranes, did not increase TUNEL labeling. Stallion sperm were also resistant to increased TUNEL labeling in response to incubation at 41 °C for 4 h or exposure to CCCP. Western blotting was performed to determine whether failure of induction of apoptosis was due to aberrant caspase activation. Procaspase-9 was detected in bull sperm, but cleavage to caspase-9 was not induced by short-term aging at 38.5, 40, or 41 °C, or exposure to CCCP. Procaspase-3 was not detected in bull spermatozoa. In conclusion, post-ejaculatory bull and stallion sperm were resistant to induction of apoptosis; this resistance, at least in bulls, was due to refractoriness of mitochondria to heat shock-induced depolarization, lack of activation of procaspase-9, and an absence of procaspase-3.  相似文献   

11.
Survivin, an inhibitor of apoptotic protein containing a single baculoviral inhibit apoptotic protein repeat domain, is a bifunctional protein that suppresses apoptosis and regulates cell division. Thus, we used double stranded RNA (dsRNA) interference to manipulate survivin expression in bovine embryos and analyze its role in blocking apoptosis and facilitating development of pre-implantation embryos. In vitro fertilized embryos (1-cell) were injected with survivin dsRNA, and expression of survivin mRNA was evaluated by real-time quantitative RT-PCR. To analyze survivin protein expression, we performed immunocytochemistry using a rabbit anti-bovine suvivin antibody. Expression levels of survivin mRNA and protein were decreased in the dsRNA group compared to the sham group. Rates of in vitro blastocyst development were lower in the survivin dsRNA-injected group than in the sham-injected group. Also, the total cell number seen in blastocysts was decreased in the dsRNA group. TUNEL assays of DNA fragmentation indicated an increased apoptotic index in the dsRNA group compared to the sham group. These results indicate that survivin is important for optimal development of bovine blastocysts and confirm that survivin expression suppresses apoptosis of pre-implantation embryos.  相似文献   

12.
It has been postulated that the progression of human pregnancy to term is, in part, the result of a relative maternal Th(2) immunological state. This can be activated in some cell types by modifying DNA methylation and histone acetylation status. We demonstrate that the molecular inhibition of histone deacetylation, using trichostatin A (TSA), in human choriodecidual explants leads to a massive increase in lipopolysaccharide (LPS)-stimulated IL-1beta. The inhibition of histone deacetylation had no effect on LPS-stimulated TNF-alpha production or production of the other cytokines studied (IL-10, IL-1 receptor antagonist). The molecular inhibition of DNA methylation and histone deacetylation, using 5-aza-2'-deoxycytidine and TSA, respectively, in human choriodecidual explants also results in an increase in the basal production of TNF-alpha but not that of IL-1beta. The differential response is unique, and the relative uncoupling of IL-1beta and TNF-alpha responsiveness may have importance in other biological systems and provide new therapeutic targets for pathologies where upregulation of IL-1beta is known to be a causative factor.  相似文献   

13.
The objectives of this study were to: (1) determine an optimal method and stage of development for vitrification of bovine zygotes or early embryos; and (2) use the optimal procedure for bovine embryos to establish equine pregnancies after vitrification and warming of early embryos. Initially, bovine embryos produced by in-vitro fertilization (IVF) were frozen and vitrified in 0.25 mL straws with minimal success. A subsequent experiment was done using two vitrification methods and super open pulled straws (OPS) with 1- or 8-cell bovine embryos. In Method 1 (EG-O), embryos were exposed to 1.5 M ethylene glycol (EG) for 5 min, 7 M ethylene glycol and 0.6 M galactose for 30 s, loaded in an OPS, and plunged into liquid nitrogen. In Method 2 (EG-DMSO), embryos were exposed to 1.1 M ethylene glycol and 1.1 M dimethyl sulfoxide (DMSO) for 3 min, 2.5 M ethylene glycol, 2.5 M DMSO and 0.5 M galactose for 30 s, and loaded and plunged as for EG-O. Cryoprotectants were removed after warming in three steps. One- and eight-cell bovine embryos were cultured for 7 and 4.5 d, respectively, after warming, and control embryos were cultured without vitrification. Cleavage rates of 1-cell embryos were similar (P > 0.05) for vitrified and control embryos, although the blastocyst rates for EG-O and control embryos were similar and higher (P < 0.05) than for EG-DMSO. The blastocyst rate of 8-cell embryos was higher (P < 0.05) for EG-O than EG-DMSO. Therefore, EG-O was used to cryopreserve equine embryos. Equine oocytes were obtained from preovulatory follicles. After ICSI, injected oocytes were cultured for 1-3 d. Two- to eight-cell embryos were vitrified, warmed and transferred into recipient's oviducts. The pregnancy rate on Day 20 was 62% (5/8) for equine embryos after vitrification and warming. In summary, a successful method was established for vitrification of early-stage bovine embryos, and this method was used to establish equine pregnancies after vitrification and warming of 2- to 8-cell embryos produced by ICSI.  相似文献   

14.
Previously, we reported that cloned embryos derived from an immortalized bovine mammary epithelial cell line (MECL) failed to develop beyond 12- to 16-cell stage. To analyze whether induction of a senescent-like phenotype in MECL can improve their ability to support the development after transfer into enucleated oocytes, we treated MECL with DNA methylation inhibitor 5-aza-2-deoxycytidine (Aza-C), histone deacetylase inhibitors trichostatin A (TSA), sodium butyrate (NaBu), or 5-bromodeoxyuridine and used those cells for nuclear transfer. Primary bovine fetal fibroblasts (BFF) were used as control. All agents were capable to induce features of senescence including reduced cell proliferation, enlarged cell size with a considerable proportion of cells stained positive for acidic senescence-associated beta-galactosidase and G1/S cell cycle boundary arrest in MECL. Aza-C treatment induced genome demethylation. Acetylation of H3 and H4 was increased after TSA treatment in both MECL and BFF, whereas no obvious changes in global H3 or H4 acetylation were detected after NaBu treatment. Nuclear transfer experiments following diverse treatments demonstrated that the induced senescent-like phenotype of MECL did not confer their ability to support embryonic development, although 7.3% of reconstructed embryos derived from NaBu-treated cells developed to morula stage. Intriguingly, a much higher proportion of cloned embryos developed to blastocysts when using NaBu-treated BFF, compared with using untreated BFF (59% versus 26%). Our results suggest that the developmental failure of donor nuclei from bovine immortal cells could not be reversed by induction of senescent-like phenotype. The beneficial effect of NaBu on the developmental potential of cloned embryos reconstructed from BFF merits further studies.  相似文献   

15.
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced.Abbreviations: ART, assisted reproductive technologies; BO, Brackett and Oliphant; BSA, bovine serum albumin; CaI, calcium ionophore; CC, cumulus cells; COC, cumulus–oocyte complex; CO2, carbon dioxide; CR1aa, Charles Rosenkran’s 1 amino acid; DNA, deoxyribonucleic acid; DO, denuded oocyte; EA, early apoptosis; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; FSH, follicle stimulating hormone; GSH, glutathione; hpi, hours post insemination; IVC, in vitro culture; IVF, in vitro fertilization; IVM, in vitro maturation; IVP, in vitro produced; LA, late apoptosis; LH, luteinizing hormone; PBS, phosphate buffered saline; PI, propidium iodide; PS, phosphatidylserine; TUNEL, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling.  相似文献   

16.
There is species divergence in control of DNA methylation during preimplantation development. The exact pattern of methylation in the bovine embryo has not been established nor has its regulation by gender or maternal signals that regulate development such as colony stimulating factor 2 (CSF2). Using immunofluorescent labeling with anti-5-methylcytosine and embryos produced with X-chromosome sorted sperm, it was demonstrated that methylation decreased from the 2-cell stage to the 6–8 cell stage and then increased thereafter up to the blastocyst stage. In a second experiment, embryos of specific genders were produced by fertilization with X- or Y-sorted sperm. The developmental pattern was similar to the first experiment, but there was stage × gender interaction. Methylation was greater for females at the 8-cell stage but greater for males at the blastocyst stage. Treatment with CSF2 had no effect on labeling for DNA methylation in blastocysts. Methylation was lower for inner cell mass cells (i.e., cells that did not label with anti-CDX2) than for trophectoderm (CDX2-positive). The possible role for DNMT3B in developmental changes in methylation was evaluated by determining gene expression and degree of methylation. Steady-state mRNA for DNMT3B decreased from the 2-cell stage to a nadir for D 5 embryos >16 cells and then increased at the blastocyst stage. High resolution melting analysis was used to assess methylation of a CpG rich region in an intronic region of DNMT3B. Methylation percent decreased between the 6–8 cell and the blastocyst stage but there was no difference in methylation between ICM and TE. Results indicate that DNA methylation undergoes dynamic changes during the preimplantation period in a manner that is dependent upon gender and cell lineage. Developmental changes in expression of DNMT3B are indicative of a possible role in changes in methylation. Moreover, DNMT3B itself appears to be under epigenetic control by methylation.  相似文献   

17.
A. Dhali 《Theriogenology》2009,71(9):1408-1416
The effect of modified droplet vitrification was assessed on cellular actin filament organization, apoptosis related gene expression and development competence in mouse embryos cultured in vitro. Mouse zygotes, 2-cell embryos and morulae were vitrified in ethylene glycol (VS-1) and ethylene glycol plus DMSO (VS-2) and thawed by directly placing the vitrified drop into 0.3 M sucrose solution at 37 °C. High recovery (93-99%) of morphologically normal embryos was evident following vitrification and thawing. No detectable actin filament disruption was observed in the embryos at any development stage following vitrification and thawing and/or in vitro culture. The expression pattern of Bax, Bcl2 and p53 genes was altered (P < 0.05) in vitrified zygotes and 2-cell embryos, but not in morulae. Although a large proportion of the vitrified zygotes (59.5 ± 4.4% in VS-1 and 57.9 ± 4.5% in VS-2; mean ± S.E.M.) and 2-cell embryos (63.1 ± 4.4% in VS-1 and 59.2 ± 4.3% in VS-2) developed into blastocysts, development of control embryos (70.2 ± 5.0% of zygotes and 75.5 ± 4.4% of 2-cell embryos) into blastocysts was higher (P < 0.05). In contrast, development of the control and vitrified morulae into blastocysts (more than 85%) was similar. We concluded that the modified droplet vitrification procedure supported better survival of morula stage compared to zygotes and 2-cell mouse embryos.  相似文献   

18.
Development to blastocyst following nuclear transfer is dependent on the donor cell's ability to reprogram its genome to that of a zygote. This reprogramming step is inefficient and may be dependent on a number of factors, including chromatin organization. Trichostatin A (TSA; 0-5 microM), a histone deacetylase inhibitor, was used to increase histone acetylation and 5-aza-2'-deoxycytidine (5-aza-dC; 0-5 microM), a DNA methyl-transferase inhibitor, was used to decrease methylation of chromatin in donor cells in an attempt to improve their reprogrammability. Adult fibroblast cells treated with 1.25 or 5 microM TSA had elevated histone H3 acetylation compared to untreated controls. Cells treated with 0.3 microM 5-aza-dC had decreased methylation compared to untreated controls. Both drugs at 0.08 microM caused morphological changes of the donor cells. Development to blastocysts by embryos cloned from donor cells after 0.08 or 0.3 microM 5-aza-dC treatments was lower than in embryos cloned from untreated control cells (9.7% and 4.2%, respectively, vs. 25.1%), whereas 0.08 microM TSA treatment of donor cells increased blastocyst development compared to controls (35.1% vs. 25.1%). These results indicate that partial erasure of preexisting epigenetic marks of donor cells improves subsequent in vitro development of cloned embryos.  相似文献   

19.
Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim of our present study was to establish the optimal TSA treatment in order to improve the development of handmade cloned (HMC) porcine embryos and examine the effect of TSA on their development. The blastocyst percentage of HMC embryos treated with 37.5nM TSA for 22-24h after activation increased up to 80% (control group-54%; P<0.05). TSA mediated increase in histone acetylation was proved by immunofluorescence analysis of acH3K9 and acH4K16. 2-cell stage embryos derived from TSA treatment displayed significant increase in histone acetylation compared to control embryos, whereas no significant differences were observed at blastocyst stage. During time-lapse monitoring, no difference was observed in the kinetics of 2-cell stage embryos. Compact morula (CM) stage was reached 15h later in TSA treated embryos compared to the control. Blastocysts (Day 5 and 6) from HMC embryos treated with TSA were transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development.  相似文献   

20.
Wang F  Kou Z  Zhang Y  Gao S 《Biology of reproduction》2007,77(6):1007-1016
Epigenetic reprogramming is thought to play an important role in the development of cloned embryos reconstructed by somatic cell nuclear transfer (SCNT). In the present study, dynamic reprogramming of histone acetylation and methylation modifications was investigated in the first cell cycle of cloned embryos. Our results demonstrated that part of somatic inherited lysine acetylation on core histones (H3K9, H3K14, H4K16) could be quickly deacetylated following SCNT, and reacetylation occurred following activation treatment. However, acetylation marks of the other lysine residues on core histones (H4K8, H4K12) persisted in the genome of cloned embryos with only mild deacetylation occurring in the process of SCNT and activation treatment. The somatic cloned embryos established histone acetylation modifications resembling those in normal embryos produced by intracytoplasmic sperm injection through these two different programs. Moreover, treatment of cloned embryos with a histone deacetylase inhibitor, Trichostatin A (TSA), improved the histone acetylation in a manner similar to that in normal embryos, and the improved histone acetylation in cloned embryos treated with TSA might contribute to improved development of TSA-treated clones. In contrast to the asymmetric histone H3K9 tri- and dimethylation present in the parental genomes of fertilized embryos, the tri- and dimethylations of H3K9 were gradually demethylated in the cloned embryos, and this histone H3K9 demethylation may be crucial for gene activation of cloned embryos. Together, our results indicate that dynamic reprogramming of histone acetylation and methylation modifications in cloned embryos is developmentally regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号