首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Survivin is a member of the chromosomal passenger complex implicated in kinetochore attachment, bipolar spindle formation, and cytokinesis. However, the mechanism by which survivin modulates these processes is unknown. Here, we show by time-lapse imaging of cells expressing either green fluorescent protein (GFP)-alpha-tubulin or the microtubule plus-end binding protein GFP-EB1 that depletion of survivin by small interfering RNAs (siRNAs) increased both the number of microtubules nucleated by centrosomes and the incidence of microtubule catastrophe, the transition from microtubule growth to shrinking. In contrast, survivin overexpression reduced centrosomal microtubule nucleation and suppressed both microtubule dynamics in mitotic spindles and bidirectional growth of microtubules in midbodies during cytokinesis. siRNA depletion or pharmacologic inhibition of another chromosomal passenger protein Aurora B, had no effect on microtubule dynamics or nucleation in interphase or mitotic cells even though mitosis was impaired. We propose a model in which survivin modulates several mitotic events, including spindle and interphase microtubule organization, the spindle assembly checkpoint and cytokinesis through its ability to modulate microtubule nucleation and dynamics. This pathway may affect the microtubule-dependent generation of aneuploidy and defects in cell polarity in cancer cells, where survivin is commonly up-regulated.  相似文献   

2.
3.
p27(Kip1) and stathmin share the stage for the first time   总被引:2,自引:0,他引:2  
Cell migration is essential for development, morphogenesis, tissue repair and tumor metastasis. p27(Kip1) and stathmin are two cell-cycle-regulatory proteins that were recently shown to play important roles in the regulation of cell migration. In this article, we discuss a new study that places p27(Kip1) and stathmin in the same pathway by showing that stathmin, a microtubule-regulatory protein, mediates the effects of p27(Kip1) on cell motility. These findings provide new insights into migration and metastasis of tumor cells and the relationship of these processes to cell proliferation.  相似文献   

4.
Yap WH  Khoo KS  Lim SH  Yeo CC  Lim YM 《Phytomedicine》2012,19(2):183-191
Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.  相似文献   

5.
Stathmin is a microtubule-destabilizing protein ubiquitously expressed in vertebrates and highly expressed in many cancers. In several cell types, stathmin regulates the partitioning of tubulin between unassembled and polymer forms, but the mechanism responsible for partitioning has not been determined. We examined stathmin function in two cell systems: mouse embryonic fibroblasts (MEFs) isolated from embryos +/+, +/−, and −/− for the stathmin gene and porcine kidney epithelial (LLCPK) cells expressing stathmin-cyan fluorescent protein (CFP) or injected with stathmin protein. In MEFs, the relative amount of stathmin corresponded to genotype, where cells heterozygous for stathmin expressed half as much stathmin mRNA and protein as wild-type cells. Reduction or loss of stathmin resulted in increased microtubule polymer but little change to microtubule dynamics at the cell periphery. Increased stathmin level in LLCPK cells, sufficient to reduce microtubule density, but allowing microtubules to remain at the cell periphery, also did not have a major impact on microtubule dynamics. In contrast, stathmin level had a significant effect on microtubule nucleation rate from centrosomes, where lower stathmin levels increased nucleation and higher stathmin levels reduced nucleation. The stathmin-dependent regulation of nucleation is only active in interphase; overexpression of stathmin-CFP did not impact metaphase microtubule nucleation rate in LLCPK cells and the number of astral microtubules was similar in stathmin +/+ and −/− MEFs. These data support a model in which stathmin functions in interphase to control the partitioning of tubulins between dimer and polymer pools by setting the number of microtubules per cell.  相似文献   

6.
Protein palmitoylation is a reversible lipid modification that plays critical roles in protein sorting and targeting to specific cellular compartments. The neuronal microtubule-regulatory phosphoproteins of the stathmin family (SCG10/stathmin 2, SCLIP/stathmin 3, and RB3/stathmin 4) are peripheral proteins that fulfill specific and complementary roles in the formation and maturation of the nervous system. All neuronal stathmins are localized at the Golgi complex and at vesicles along axons and dendrites. Their membrane anchoring results from palmitoylation of two close cysteine residues present within their homologous N-terminal targeting domains. By preventing palmitoylation with 2-bromopalmitate or disrupting the integrity of the Golgi with brefeldin A, we were able to show that palmitoylation of stathmins 2 and 3 likely occurs at the Golgi and is crucial for their specific subcellular localization and trafficking. In addition, this membrane binding is promoted by a specific set of palmitoyl transferases that localize with stathmins 2 and 3 at the Golgi, directly interact with them, and enhance their membrane association. The subcellular membrane-associated microtubule-regulatory activity of stathmins might then be fine-tuned by extracellular stimuli controlling their reversible palmitoylation, which can be viewed as a crucial regulatory process for specific and local functions of stathmins in neurons.  相似文献   

7.
The oncoprotein 18/stathmin family of microtubule destabilizers.   总被引:19,自引:0,他引:19  
The past several years have seen major advances in our understanding of the mechanisms of microtubule destabilization by oncoprotein18/stathmin (Op18/stathmin) and related proteins. New structural information has clearly shown how members of the Op18/stathmin protein family bind tubulin dimers and suggests models for how these proteins stimulate catastrophe, the transition from microtubule growth to shortening. Regulation of Op18/stathmin by phosphorylation continues to capture much attention. Studies suggest that phosphorylation occurs in a localized fashion, resulting in decreased microtubule destabilizing activity near chromatin or microtubule polymer. A spatial gradient of inactive Op18/stathmin associated with chromatin or microtubules could contribute significantly to mitotic spindle assembly.  相似文献   

8.
Microtubule Stabilization in Pressure Overload Cardiac Hypertrophy   总被引:6,自引:1,他引:5       下载免费PDF全文
Increased microtubule density, for which microtubule stabilization is one potential mechanism, causes contractile dysfunction in cardiac hypertrophy. After microtubule assembly, α-tubulin undergoes two, likely sequential, time-dependent posttranslational changes: reversible carboxy-terminal detyrosination (Tyr-tubulin ↔ Glu-tubulin) and then irreversible deglutamination (Glu-tubulin → Δ2-tubulin), such that Glu- and Δ2-tubulin are markers for long-lived, stable microtubules. Therefore, we generated antibodies for Tyr-, Glu-, and Δ2-tubulin and used them for staining of right and left ventricular cardiocytes from control cats and cats with right ventricular hypertrophy. Tyr- tubulin microtubule staining was equal in right and left ventricular cardiocytes of control cats, but Glu-tubulin and Δ2-tubulin staining were insignificant, i.e., the microtubules were labile. However, Glu- and Δ2-tubulin were conspicuous in microtubules of right ventricular cardiocytes from pressure overloaded cats, i.e., the microtubules were stable. This finding was confirmed in terms of increased microtubule drug and cold stability in the hypertrophied cells. In further studies, we found an increase in a microtubule binding protein, microtubule-associated protein 4, on both mRNA and protein levels in pressure-hypertrophied myocardium. Thus, microtubule stabilization, likely facilitated by binding of a microtubule-associated protein, may be a mechanism for the increased microtubule density characteristic of pressure overload cardiac hypertrophy.  相似文献   

9.
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.  相似文献   

10.
In eukaryotic cells a specialized organelle called the microtubule organizing center (MTOC) is responsible for disposition of microtubules in a radial, polarized array in interphase cells and in the spindle in mitotic cells. Eukaryotic cells across different species, and different cell types within single species, have morphologically diverse MTOCs, but these share a common function of organizing microtubule arrays. MTOCs effect microtubule organization by initiating microtubule assembly and anchoring microtubules by their slowly growing minus ends, thus ensuring that the rapidly growing plus ends extend distally in each microtubule array. The goal is to define molecular components of the MTOC responsible for regulating microtubule assembly. One approach to defining the molecules responsible for MTOC function is to look for molecules common to all MTOCs. A newly discovered centrosomal protein, γ-tubulin, is found in MTOCs in cells from many different organisms, and has several properties which make it a candidate for both initiation of microtubule assembly and anchorage. The hypothesis that γ-tubulin plays a role in MTOCs in microtubule initiation and anchorage is currently being tested by a variety of experimental approaches.  相似文献   

11.
Chlamydia species are obligate intracellular pathogens that utilize a type three secretion system to manipulate host cell processes. Genetic manipulations are currently not possible in Chlamydia, necessitating study of effector proteins in heterologous expression systems and severely complicating efforts to relate molecular strategies used by Chlamydia to the biochemical activities of effector proteins. CopN is a chlamydial type three secretion effector that is essential for virulence. Heterologous expression of CopN in cells results in loss of microtubule spindles and metaphase plate formation and causes mitotic arrest. CopN is a multidomain protein with similarity to type three secretion system "plug" proteins from other organisms but has functionally diverged such that it also functions as an effector protein. We show that CopN binds directly to αβ-tubulin but not to microtubules (MTs). Furthermore, CopN inhibits tubulin polymerization by sequestering free αβ-tubulin, similar to one of the mechanisms utilized by stathmin. Although CopN and stathmin share no detectable sequence identity, both influence MT formation by sequestration of αβ-tubulin. CopN displaces stathmin from preformed stathmin-tubulin complexes, indicating that the proteins bind overlapping sites on tubulin. CopN is the first bacterial effector shown to disrupt MT formation directly. This recognition affords a mechanistic understanding of a strategy Chlamydia species use to manipulate the host cell cycle.  相似文献   

12.
In the leading edge of migrating cells, a subset of microtubules exhibits net growth in a Rac1- and p21-activated kinase-dependent manner. Here, we explore the possibility of whether phosphorylation and inactivation of the microtubule-destabilizing protein Op18/stathmin could be a mechanism regulating microtubule dynamics downstream of Rac1 and p21-activated kinases. We find that, in vitro, Pak1 phosphorylates Op18/stathmin specifically at serine 16 and inactivates its catastrophe promoting activity in biochemical and time lapse microscopy microtubule assembly assays. Furthermore, phosphorylation of either serine 16 or 63 is sufficient to inhibit Op18/stathmin in vitro. In cells, the microtubule-destabilizing effect of an excess of Op18/stathmin can be partially overcome by expression of constitutively active Rac1(Q61L), which is dependent on Pak activity, suggesting that the microtubule cytoskeleton can be regulated through inactivation of Op18/stathmin downstream of Rac1 and Pak in vivo. However, in vivo, Pak1 activity alone is not sufficient to phosphorylate Op18, indicating that additional pathways downstream of Rac1 are required for Op18 regulation.  相似文献   

13.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

14.
Stathmin/Op18 destabilizes microtubules in vitro and regulates microtubule polymerization in vivo. Both a microtubule catastrophe-promoting activity and a tubulin sequestering activity were demonstrated for stathmin in vitro, and both could contribute to microtubule depolymerization in vivo. Stathmin activity can be turned down by extensive phosphorylation on its four phosphorylatable serines, and down-regulation of stathmin activity by phosphorylation is necessary for cells to proceed through mitosis. We show here that microinjection of a nonphosphorylatable Ser to Ala (4A) quadruple mutant in Xenopus two-cell stage embryos results in cell cleavage arrest in the injected blastomeres and aborted development, whereas injection of a pseudo-phosphorylated Ser to Glu quadruple mutant (4E) does not prevent normal development. Addition of these mutants to mitotic cytostatic factor-arrested extracts in which spindle assembly was induced led to a dramatic reduction of spindle size with 4A stathmin, and to a moderate increase with 4E stathmin, but both localized to spindle poles. Interestingly, the microtubule assembly-dependent phosphorylation of endogenous stathmin was abolished in the presence of 4A stathmin, but not of 4E stathmin. Altogether, this shows that the phosphorylation-mediated regulation of stathmin activity during the cell cycle is essential for early Xenopus embryonic development.  相似文献   

15.
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin–cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.  相似文献   

16.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

17.
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.  相似文献   

18.
Centrosome-mediated microtubule nucleation is essential for spindle assembly during mitosis. Although γ-tubulin complexes have primarily been implicated in the nucleation process, details of the underlying mechanisms remain poorly understood. Here, we demonstrated that a member of the human transforming acidic coiled-coil (TACC) protein family, TACC3, plays a critical role in microtubule nucleation at the centrosome. In mitotic cells, TACC3 knockdown substantially affected the assembly of microtubules in the astral region and impaired microtubule nucleation at the centrosomes. The TACC3 depletion-induced mitotic phenotype was rescued by expression of the TACC3 C terminus predominantly consisting of the TACC domain, suggesting that the TACC domain plays an important role in microtubule assembly. Consistently, experiments with the recombinant TACC domain of TACC3 demonstrated that this domain possesses intrinsic microtubule nucleating activity. Co-immunoprecipitation and sedimentation experiments revealed that TACC3 mediates interactions with proteins of both the γ-tubulin ring complex (γ-TuRC) and the γ-tubulin small complex (γ-TuSC). Interestingly, TACC3 depletion resulted in reduced levels of γ-TuRC and increased levels of γ-TuSC, indicating that the assembly of γ-TuRC from γ-TuSC requires TACC3. Detailed analyses suggested that TACC3 facilitates the association of γ-TuSC-specific proteins with the proteins known to be involved in the assembly of γ-TuRC. Consistent with such a role for TACC3, the suppression of TACC3 disrupted localization of γ-TuRC proteins to the centrosome. Our findings reveal that TACC3 is involved in the regulation of microtubule nucleation at the centrosome and functions in the stabilization of the γ-tubulin ring complex assembly.  相似文献   

19.
A multigene family produces tubulin isotypes that are expressed in a tissue-specific manner, but the role of these isotypes in microtubule assembly and function is unclear. Recently we showed that overexpression or depletion of β5-tubulin, a minor isotype with wide tissue distribution, inhibits cell division. We now report that elevated β5-tubulin causes uninterrupted episodes of microtubule shortening and increased shortening rates. Conversely, depletion of β5-tubulin reduces shortening rates and causes very short excursions of growth and shortening. A tubulin conformation-sensitive antibody indicated that the uninterrupted shortening can be explained by a relative absence of stabilized patches along the microtubules that contain tubulin in an assembly-competent conformation and normally act to restore microtubule growth. In addition to these changes in dynamic instability, overexpression of β5-tubulin causes fragmentation that results from microtubule detachment from centrosomes, and it is this activity that best explains the effects of β5 on cell division. Paclitaxel inhibits microtubule detachment, increases the number of assembly-competent tubulin patches, and inhibits microtubule shortening, thus providing an explanation for why the drug can counteract the phenotypic effects of β5 overexpression. On the basis of these observations, we propose that cells can use β5-tubulin expression to adjust the behavior of the microtubule cytoskeleton.  相似文献   

20.
Microtubules are essential cytoskeletal elements assembled from αβ-tubulin dimers. In high eukaryotes, microtubule nucleation, the de novo assembly of a microtubule from its minus end, is initiated by the γ-tubulin ring complex (γ-TuRC). Despite many years of research, the structural and mechanistic principles of the microtubule nucleation machinery remained poorly understood. Only recently, cryoelectron microscopy studies uncovered the molecular organization and potential activation mechanisms of γ-TuRC. In vitro assays further deciphered the spatial and temporal cooperation between γ-TuRC and additional factors, for example, the augmin complex, the phase separation protein TPX2, and the microtubule polymerase XMAP215. These breakthroughs deepen our understanding of microtubule nucleation mechanisms and will link the assembly of individual microtubules to the organization of cellular microtubule networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号