共查询到20条相似文献,搜索用时 15 毫秒
1.
Linda Jeanguenin Anne Lebaudy Jér?me Xicluna Carine Alcon Eric Hosy Geoffrey Duby Erwan Michard Beno?t Lacombe Ingo Dreyer Jean-Baptiste Thibaud 《Plant signaling & behavior》2008,3(9):622-625
Potassium translocation in plants is accomplished by a large variety of transport systems. Most of the available molecular information on these proteins concerns voltage-gated potassium channels (Kv channels). The Arabidopsis genome comprises nine genes encoding α-subunits of Kv channels. Based on knowledge of their animal homologues, and on biochemical investigations, it is broadly admitted that four such polypeptides must assemble to yield a functional Kv channel. The intrinsic functional properties of Kv channel α-subunits have been described by expressing them in suitable heterologous contexts where homo-tetrameric channels could be characterized. However, due to the high similarity of both the polypeptidic sequence and the structural scheme of Kv channel α-subunits, formation of heteromeric Kv channels by at least two types of α-subunits is conceivable. Several examples of such heteromeric plant Kv channels have been studied in heterologous expression systems and evidence that heteromerization actually occurs in planta has now been published. It is therefore challenging to uncover the physiological role of this heteromerization. Fine tuning of Kv channels by heteromerisation could be relevant not only to potassium transport but also to electrical signaling within the plant.Key words: heteromerization, voltage-gated channels, membrane potential 相似文献
2.
Although enhanced calpain activity is well documented after traumatic brain injury (TBI), the pathways targeting specific substrate proteolysis are less defined. Our past work demonstrated that calpain cleaves voltage gated sodium channel (NaCh) α-subunits in an in vitro TBI model. In this study, we investigated the pathways leading to NaCh cleavage utilizing our previously characterized in vitro TBI model, and determined the location of calpain activation within neuronal regions following stretch injury to micropatterned cultures. Calpain specific breakdown products of α-spectrin appeared within axonal, dendritic, and somatic regions 6 h after injury, concurrent with the appearance of NaCh α-subunit proteolysis in both whole cell or enriched axonal preparations. Direct pharmacological activation of either NMDA receptors (NMDArs) or NaChs resulted in NaCh proteolysis. Likewise, a chronic (6 h) dual inhibition of NMDArs/NaChs but not L-type voltage gated calcium channels significantly reduced NaCh proteolysis 6 h after mechanical injury. Interestingly, an early, transient (30 min) inhibition of NMDArs alone significantly reduced NaCh proteolysis. Although a chronic inhibition of calpain significantly reduced proteolysis, a transient inhibition of calpain immediately after injury failed to significantly attenuate NaCh proteolysis. These data suggest that both NMDArs and NaChs are key contributors to calpain activation after mechanical injury, and that a larger temporal window of sustained calpain activation needs consideration in developing effective treatments for TBI. 相似文献
3.
Jun Li Chang-Lei Deng Fang Gao Jiu-Hua Cheng Zhi-Bin Yu Li Liu Man-Jiang Xie 《Molecular and cellular biochemistry》2009,331(1-2):117-126
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition. 相似文献
4.
Asser Nyander Poulsen Helle Wulf Inger Jansen-Olesen Dan A. Klaerke 《生物化学与生物物理学报:生物膜》2009,1788(2):380-389
We investigated the expression of splice variants and β-subunits of the BK channel (big conductance Ca2+-activated K+ channel, Slo1, MaxiK, KCa1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An α-subunit splice variant X1+ 24 was found expressed (RT-PCR) in nervous tissue only where also the SS4+ 81 variant was dominating with little expression of the short form SS40. SS4+ 81 was present in some cerebral vessels too. The SS2+ 174 variant (STREX) was found in both blood vessels and in nervous tissue. In situ hybridization data supported the finding of SS4+ 81 and SS2+ 174 in vascular smooth muscle and trigeminal ganglion. β-subunits β2 and β4 showed high expression in brain and trigeminal ganglion and some in cerebral vessels while β1 showed highest expression in blood vessels. β3 was found only in testis and possibly brain. A novel splice variant X2+ 92 was found, which generates a stop codon in the intracellular C-terminal part of the protein. This variant appears non-functional as a homomer but may modulate the function of other splice-variants when expressed in Xenopus oocytes. In conclusion a great number of splice variant and β-subunit combinations likely exist, being differentially expressed among nervous and vascular tissues. 相似文献
5.
The voltage sensor domain (VSD) of the potassium ion channel KvAP is comprised of four (S1–S4) α-helix proteins, which are encompassed by several charged residues. Apart from these charges, each peptide α-helix having two inherent equal and opposite terminal dipolar charges behave like a macrodipole. The activity of voltage gated ion channel is electrostatic, where all the charges (charged residues and dipolar terminal charges) interact with each other and with the transmembrane potential. There are evidences that the role of the charged residues dominate the stabilization of the conformation and the gating process of the ion channel, but the role of the terminal dipolar charges are never considered in such analysis. Here, using electrostatic theory, we have studied the role of the dipolar terminal charges in aggregation of the S3b–S4 helix pair of KvAP in the absence of any external field (V = 0). A system attains stability, when its potential energy reaches minimum values. We have shown that the presence of terminal dipole charges (1) change the total potential energy of the charges on S3b–S4, affecting the stabilization of the α-helix pair within the bilayer lipid membrane and (2) the C- and the N-termini of the α-helices favor a different dielectric medium for enhanced stability. Thus, the dipolar terminal charges play a significant role in the aggregation of the two neighboring α-helices. 相似文献
6.
Burgard S Harada M Kagawa Y Trommer WE Vogel PD 《Cell biochemistry and biophysics》2003,39(3):175-181
The photoaffinity spin-labeled ATP analog, 2-N3-SL-adenosine triphosphate (ATP), was used to covalently modify isolated β-subunits from F1-ATPase of the thermophilic bacterium PS3. Approximately 1.2 mol of the nucleotide analog bound to the isolated subunit in
the dark. Irradiation leads to covalent incorporation of the nucleotide into the binding site. ESR spectra of the complex
show a signal that is typical for protein-immobilized radicals. Addition of isolated α-subunits to the modified β-subunits
results in ESR spectra with two new signals indicative of two distinctly different environments of the spin-label, e.g., two
distinctly different conformations of the catalytic sites. The relative ratio of the signals is approx 2∶1 in favor of the
more closed conformation. The data show for the first time that when nucleotides are bound to isolated β-subunits, binding
of α-subunits induces asymmetry in the catalytic sites even in the absence of the γ-subunit.
This work was supported by a grant from the Deutsche Forschungsgemeinschaft to PDV. 相似文献
7.
8.
Xin W Cheng Q Soder RP Petkov GV 《American journal of physiology. Cell physiology》2012,302(9):C1361-C1370
Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ~3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ~2-fold and hyperpolarized the DSM cell resting membrane potential by ~6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca(2+) sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization. 相似文献
9.
Inhibin and activin are essential dimeric glycoproteins belonging to the transforming growth factor-beta (TGFβ) superfamily. Inhibin is a heterodimer of α- and β-subunits, whereas activin is a homodimer of β-subunits. Production of inhibin is regulated during the reproductive cycle and requires the processing of pro-ligands to produce mature hormone. Furin is a subtilisin-like proprotein convertase (proconvertase) that activates precursor proteins by cleavage at basic sites during their transit through the secretory pathway and/or at the cell surface. We hypothesized that furin-like proconvertases are central regulators of inhibin α- and β-subunit processing within the ovary. We analyzed the expression of the proconvertases furin, PCSK5, PCSK6, and PCSK7 in the developing mouse ovary by real-time quantitative RT-PCR. The data showed that proconvertase enzymes are temporally expressed in ovarian cells. With the transition from two-layer secondary to pre-antral follicle, only PCSK5 mRNA was significantly elevated. Activin A selectively enhanced expression of PCSK5 mRNA and decreased expression of furin and PCSK6 in cultured two-layer secondary follicles. Inhibition of proconvertase enzyme activity by dec-RVKR-chloromethylketone (CMK), a highly specific and potent competitive inhibitor of subtilisin-like proconvertases, significantly impeded both inhibin α- and β-subunit maturation in murine granulosa cells. Overexpression of PC5/6 in furin-deficient cells led to increased inhibin α- and β(B)-subunit maturation. Our data support the role of proconvertase PCSK5 in the processing of ovarian inhibin subunits during folliculogenesis and suggest that this enzyme may be an important regulator of inhibin and activin bioavailability. 相似文献
10.
11.
Hiroyuki Uehara Bok Du Choi Enoch Y. Park Mitsuyasu Okabe 《Biotechnology and Bioprocess Engineering》2000,5(1):7-12
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9,
yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS
4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into
thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity,
290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared
with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of
the recombinantS. cerevisiae. 相似文献
12.
Pinopsin is a photoreceptive molecule present in the outer segments of chicken pinealocytes. In this paper, the localization of alpha-subunits of G-proteins, rod transducin (Gt1) and Gq/11, was examined by immunoelectron microscopy to investigate whether these G-proteins colocalize with pinopsin in the outer segments. Ultrathin sections of the chicken pineal gland were double-immunolabeled with antibodies to pinopsin and either Gt1alpha or Gq/11alpha. As shown previously, the outer segments around the follicular lumen exhibited divergent morphology with ciliary, bulbous, or lamellate shapes, and most of them displayed pinopsin immunoreactivity. The majority (>90%) of pinopsin-immunopositive outer segments were labeled by anti-Gt1alpha and/or anti-Gq/11alpha antibodies. Application of double-immunolabeling to serial sections demonstrated that a large number of the pinopsin-immunopositive outer segments contained both Gt1alpha and Gq/11alpha immunoreactivities. These results suggest that Gt1alpha and Gq/11alpha are functionally coupled with light-activated pinopsin within a single outer segment. 相似文献
13.
Wadahama H Iwasaki K Matsusaki M Nishizawa K Ishimoto M Arisaka F Takagi K Urade R 《Plant physiology》2012,158(3):1395-1405
β-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean β-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α'- and α-subunits of β-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the β-conglycinin complexes containing the disulfide-linked α'/α-subunits were complexes of more than 720 kD. The α'- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α'/α-subunits residing in different β-conglycinin hexamers, but the binding of P34 to α'- and α-subunits reduces the linkage between β-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when β-conglycinin was expressed under nonreducing conditions. 相似文献
14.
Hermosilla T Moreno C Itfinca M Altier C Armisén R Stutzin A Zamponi GW Varela D 《Channels (Austin, Tex.)》2011,5(3):280-286
Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. 相似文献
15.
Roland S. Wu Guoxia Liu Sergey I. Zakharov Neelesh Chudasama Howard Motoike Arthur Karlin Steven O. Marx 《The Journal of general physiology》2013,141(1):105-117
Large-conductance voltage- and Ca2+-gated K+ channels are negative-feedback regulators of excitability in many cell types. They are complexes of α subunits and of one of four types of modulatory β subunits. These have intracellular N- and C-terminal tails and two transmembrane (TM) helices, TM1 and TM2, connected by an ∼100-residue extracellular loop. Based on endogenous disulfide formation between engineered cysteines (Cys), we found that in β2 and β3, as in β1 and β4, TM1 is closest to αS1 and αS2 and TM2 is closest to αS0. Mouse β3 (mβ3) has seven Cys in its loop, one of which is free, and this Cys readily forms disulfides with Cys substituted in the extracellular flanks of each of αS0–αS6. We identified by elimination mβ3-loop Cys152 as the only free Cys. We inferred the disulfide-bonding pattern of the other six Cys. Using directed proteolysis and fragment sizing, we determined this pattern first among the four loop Cys in β1. These are conserved in β2–β4, which have four additional Cys (eight in total), except that mβ3 has one fewer. In β1, disulfides form between Cys at aligned positions 1 and 8 and between Cys at aligned positions 5 and 6. In mβ3, the free Cys is at position 7; position 2 lacks a Cys present in all other β2–β4; and the disulfide pattern is 1–8, 3–4, and 5–6. Presumably, Cys 2 cross-links to Cys 7 in all other β2–β4. Cross-linking of mβ3 Cys152 to Cys substituted in the flanks of αS0–S5 attenuated the protection against iberiotoxin (IbTX); cross-linking of Cys152 to K296C in the αS6 flank and close to the pore enhanced protection against IbTX. In no case was N-type inactivation by the N-terminal tail of mβ3 perturbed. Although the mβ3 loop can move, its position with Cys152 near αK296, in which it blocks IbTX binding, is likely favored. 相似文献
16.
《Channels (Austin, Tex.)》2013,7(3):280-286
Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Cavβ subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Cavβ subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Cavβ subunit isoform, with Cavβ1bcontaining channels being more strongly regulated. Cavβ2acontaining channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Cavβ subunit-dependent manner. These data demonstrate that Cavβ subunits alter the magnitude of inhibition of L-type current by Angiotensin II. 相似文献
17.
18.
Yang Liu Dong Dong Nai-Jian Han Hua-Bin Zhao Jin-Shuo Zhang Gang Li Paul A. Racey Shu-Yi Zhang 《Biochemical genetics》2009,47(3-4):257-265
Bats are the only mammals with the capacity for powered flight. When flying, they need abundant energy and oxygen. According to previous works, the hemoglobin (Hb) oxygen loading function of bats is insensitive to variations in body temperature, although different bat species have different heat sensitivity. We cloned Hb α-chain sequences from eight bat species to investigate whether they have different characteristics. We found that Hb in the bat lineages is under purifying selection, which accords with the importance of its function in bats. Three turn regions in bat Hb, however, have distinct evolutionary rates compared with those of other mammals, and the codons in these regions have an accelerated rate of evolution. These codons are under divergent selection in bats. These changes in Hb may have occurred in response to the physiological requirements of the species concerned, as adaptations to different lifestyles. 相似文献
19.
20.
Emmanouilidou E Elenis D Papasilekas T Stranjalis G Gerozissis K Ioannou PC Vekrellis K 《PloS one》2011,6(7):e22225
Genetic, biochemical, and animal model studies strongly suggest a central role for α-synuclein in the pathogenesis of Parkinson's disease. α-synuclein lacks a signal peptide sequence and has thus been considered a cytosolic protein. Recent data has suggested that the protein may be released from cells via a non-classical secretory pathway and may therefore exert paracrine effects in the extracellular environment. However, proof that α-synuclein is actually secreted into the brain extracellular space in vivo has not been obtained. We developed a novel highly sensitive ELISA in conjugation with an in vivo microdialysis technique to measure α-synuclein in brain interstitial fluid. We show for the first time that α-synuclein is readily detected in the interstitial fluid of both α-synuclein transgenic mice and human patients with traumatic brain injury. Our data suggest that α-synuclein is physiologically secreted by neurons in vivo. This interstitial fluid pool of the protein may have a role in the propagation of synuclein pathology and progression of Parkinson's disease. 相似文献