首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The subunit S5a is a key component for the recruitment of ubiquitinated substrates to the 26S proteasome. When the full-length S5a, the N-terminal half of S5a (S5aN) containing the von Willebrand A (vWA) domain, and the C-terminal half of S5a (S5aC) containing two ubiquitin(Ub)-interacting motifs (UIMs) were ectopically expressed in HEK293 cells, Ub-conjugates accumulated most prominently in S5aC-expressing cells. In addition, S5aC induced A549 lung cancer cell death but not non-cancer BEAS-2B cell death. Similar effects were observed using only S5a-UIMs. Our data therefore suggest that S5a-UIMs can be used as upstream inhibitors of the proteasome pathway.  相似文献   

2.
The 26S proteasome recognizes a vast number of ubiquitin-dependent degradation signals linked to various substrates. This recognition is mediated mainly by the stoichiometric proteasomal resident ubiquitin receptors S5a and Rpn13, which harbor ubiquitin-binding domains. Regulatory steps in substrate binding, processing, and subsequent downstream proteolytic events by these receptors are poorly understood. Here we demonstrate that mammalian S5a is present in proteasome-bound and free states. S5a is required for efficient proteasomal degradation of polyubiquitinated substrates and the recruitment of ubiquitin-like (Ubl) harboring proteins; however, S5a-mediated ubiquitin and Ubl binding occurs only on the proteasome itself. We identify the VWA domain of S5a as a domain that limits ubiquitin and Ubl binding to occur only upon proteasomal association. Multiubiquitination events within the VWA domain can further regulate S5a association. Our results provide a molecular explanation to how ubiquitin and Ubl binding to S5a is restricted to the 26S proteasome.  相似文献   

3.
The impaired ubiquitin-proteasome activity is believed to be one of the leading factors that contribute to Parkinson disease pathogenesis partially by causing alpha-synuclein aggregation. However, the relationship between alpha-synuclein aggregation and the impaired proteasome activity is yet unclear. In this study, we examined the effects of three soluble alpha-synuclein species (monomer, dimer, and protofibrils) on the degradation activity of the 26 S proteasome by reconstitution of proteasomal degradation using highly purified 26 S proteasomes and model substrates. We found that none of the three soluble alpha-synuclein species impaired the three distinct peptidase activities of the 26 S proteasome when using fluorogenic peptides as substrates. In striking contrast, alpha-synuclein protofibrils, but not monomer and dimer, markedly inhibited the ubiquitin-independent proteasomal degradation of unstructured proteins and ubiquitin-dependent degradation of folded proteins when present at 5-fold molar excess to the 26 S proteasome. Together these results indicate that alpha-synuclein protofibrils have a pronounced inhibitory effect on 26 S proteasome-mediated protein degradation. Because alpha-synuclein is a substrate of the proteasome, impaired proteasomal activity could further cause alpha-synuclein accumulation/aggregation, thus creating a vicious cycle and leading to Parkinson disease pathogenesis. Furthermore we found that alpha-synuclein protofibrils bound both the 26 S proteasome and substrates of the 26 S proteasome. Accordingly we propose that the inhibitory effect of alpha-synuclein protofibrils on 26 S proteasomal degradation might result from impairing substrate translocation by binding the proteasome or sequestrating proteasomal substrates by binding the substrates.  相似文献   

4.
We report the functional characterization of RPN6, an essential gene from Saccharomyces cerevisiae encoding the proteasomal subunit Rpn6p. For this purpose, conditional mutants that are able to grow on galactose but not on glucose were obtained. When these mutants are shifted to glucose, Rpn6p depletion induces several specific phenotypes. First, multiubiquitinated proteins accumulate, indicating a defect in proteasome-mediated proteolysis. Second, mutant yeasts are arrested as large budded cells with a single nucleus and a 2C DNA content; in addition, the spindle pole body is duplicated, indicating a general cell cycle defect related to the turnover of G(2)-cyclins after DNA synthesis. Clb2p and Pds1p, but not Sic1p, accumulate in the arrested cells. Depletion of Rpn6p affects both the structure and the peptidase activity of proteasomes in the cell. These results implicate Rpn6p function in the specific recognition of a subset of substrates and point to a role in maintaining the correct quaternary structure of the 26 S proteasome.  相似文献   

5.
We have identified the N-terminus of adenovirus early region 1A (AdE1A) as a region that can regulate the 26S proteasome. Specifically, in vitro and in vivo co-precipitation studies have revealed that the 19S regulatory components of the proteasome, Sug1 (S8) and S4, bind through amino acids (aa) 4-25 of Ad5 E1A. In vivo expression of wild-type (wt) AdE1A, in contrast to the N-terminal AdE1A mutant that does not bind the proteasome, reduces ATPase activity associated with anti-S4 immunoprecipitates relative to mock-infected cells. This reduction in ATPase activity correlates positively with the ability of wt AdE1A, but not the N-terminal deletion mutant, to significantly reduce the ability of HPV16 E6 to target p53 for ubiquitin-mediated proteasomal degradation. AdE1A/proteasomal complexes are present in both the cytoplasm and the nucleus, suggesting that AdE1A interferes with both nuclear and cytoplasmic proteasomal degradation. We have also demonstrated that wt AdE1A and the N-terminal AdE1A deletion mutant are substrates for proteasomal-mediated degradation. AdE1A degradation is not, however, mediated through ubiquitylation, but is regulated through phosphorylation of residues within a C-terminal PEST region (aa 224-238).  相似文献   

6.
7.
Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.  相似文献   

8.
9.
Proteolysis of ubiquitinated sperm and oocyte proteins by the 26S proteasome is necessary for the success of mammalian fertilization, including but not limited to acrosomal exocytosis and sperm-zona pellucida (ZP) penetration. The present study examined the role of PSMD4, an essential non-ATPase subunit of the proteasomal 19S regulatory complex responsible for proteasome-substrate recognition, in sperm-ZP penetration during porcine fertilization in vitro (IVF). Porcine sperm-ZP penetration, but not sperm-ZP binding, was blocked in the presence of a monoclonal anti-PSMD4 antibody during IVF. Inclusion in the fertilization medium of mutant ubiquitins (Ub+1 and Ub5+1), which are refractory to processing by the 19S regulatory complex and associated with Alzheimer’s disease, also inhibited fertilization. This observation suggested that subunit PSMD4 is exposed on the sperm acrosomal surface, a notion that was further supported by the binding of non-cell permeant, biotinylated proteasomal inhibitor ZL3VS to the sperm acrosome. Immunofluorescence localized PSMD4 in the sperm acrosome. Immunoprecipitation and proteomic analysis revealed that PSMD4 co-precipitated with porcine sperm-associated acrosin inhibitor (AI). Ubiquitinated species of AI were isolated from boar sperm extracts by affinity purification of ubiquitinated proteins using the recombinant UBA domain of p62 protein. Some proteasomes appeared to be anchored to the sperm head inner acrosomal membrane, as documented by co-fractionation studies. In conclusion, the 19S regulatory complex subunit PSMD4 is involved in the sperm-ZP penetration during fertilization. The recognition of substrates on the ZP by the 19S proteasomal regulatory complex is essential for the success of porcine/mammalian fertilization in vitro.  相似文献   

10.
PA700, the 19 S regulatory complex of the 26 S proteasome, plays a central role in the recognition and efficient degradation of misfolded proteins. PA700 promotes degradation by recruiting proteasomal substrates utilizing polyubiquitin chains and chaperone-like binding activities and by opening the access to the core of the 20 S proteasome to promote degradation. Here we provide evidence that PA700 in addition to binding misfolded protein substrates also acts to remodel their conformation prior to proteolysis. Scrambled RNase A (scRNase A), a misfolded protein, only slowly refolds spontaneously into an active form because of the rate-limiting unfolding of misfolded disulfide isomers. Notably, PA700 accelerates the rate of reactivation of scRNase A, consistent with its ability to increase the exposure of these disulfide bonds to the solvent. In this regard, PA700 also exposes otherwise buried sites to digestion by exogenous chymotrypsin in a polyubiquitinated enzymatically active substrate, pentaubiquitinated dihydrofolate reductase, Ub(5)DHFR. The dihydrofolate reductase ligand methotrexate counters the ability of PA700 to promote digestion by chymotrypsin. Together, these results indicate that in addition to increasing substrate affinity and opening the access channel to the catalytic sites, PA700 activates proteasomal degradation by remodeling the conformation of protein substrates.  相似文献   

11.
The 26S proteasome: a dynamic structure   总被引:1,自引:0,他引:1  
The proteasomal system consists of a proteolytic core, the 20S proteasome, which associates in ATP-dependent and independent reactions with endogenous regulators providing specific substrate binding sites, chaperone function and regulation of activity to the protease. The best known regulators of the 20S proteasome are the 11S and the 19S complexes. Three subunits of the 20S proteasome and the two subunits of the 11S regulator are induced by -Interferon. However, there are no indications for an influence of -interferon on the subunit composition of the 19S regulator and only a few data exist about the dynamics of this complex. The analysis of 19S regulator subunits from yeast mutants reveals that the ATPases appear to be stringently organized in the 26S complex, while peripheral non-ATPases, such as S5a, might serve as subunits which shuttle substrates to the enzyme. A novel non-ATPase has been cloned, sequenced and identified in a complex besides the 19S regulator, the function of which is presently unknown. The dynamic structure of the 26S proteasome is also characterized by transient associations with components such as the modulator and isopeptidases. Certain viral proteins can also be associated with components of the proteasomal system and alter enzymatic activities.  相似文献   

12.
The accumulation of aggregated alpha-synuclein is thought to contribute to the pathophysiology of Parkinson's disease, but the mechanism of toxicity is poorly understood. Recent studies suggest that aggregated proteins cause toxicity by inhibiting the ubiquitin-dependent proteasomal system. In the present study, we explore how alpha-synuclein interacts with the proteasome. The proteasome exists as a 26 S and a 20 S species. The 26 S proteasome is composed of the 19 S cap and the 20 S core. Aggregated alpha-synuclein strongly inhibited the function of the 26 S proteasome. The IC(50) of aggregated alpha-synuclein for ubiquitin-independent 26 S proteasomal activity was 1 nm. Aggregated alpha-synuclein also inhibited 26 S ubiquitin-dependent proteasomal activity at a dose of 500 nm. In contrast, the IC(50) of aggregated alpha-synuclein for 20 S proteasomal activity was > 1 microm. This suggests that aggregated alpha-synuclein selectively interacts with the 19 S cap. Monomeric alpha-synuclein also inhibited proteasomal activity but with lower affinity and less potency. Recombinant monomeric alpha-synuclein inhibited the activity of the 20 S proteasomal core with an IC(50) > 10 microm, exhibited no inhibition of 26 S ubiquitin-dependent proteasomal activity at doses up to 5 microm, and exhibited only partial inhibition (50%) of the 26 S ubiquitin-independent proteasomal activity at doses up to 10 mm. Binding studies demonstrate that both aggregated and monomeric alpha-synuclein selectively bind to the proteasomal protein S6', a subunit of the 19 S cap. These studies suggest that proteasomal inhibition by aggregated alpha-synuclein could be mediated by interaction with S6'.  相似文献   

13.
The number of proteasomal substrates that are degraded without prior ubiquitylation continues to grow. However, it remains poorly understood how the proteasome recognizes substrates lacking a ubiquitin (Ub) signal. Here we demonstrated that the Ub-independent degradation of Rpn4 requires the 19S regulatory particle (RP). The Ub-independent degron of Rpn4 was mapped to an N-terminal region including the first 80 residues. Inspection of its amino acid sequence revealed that the Ub-independent degron of Rpn4 consists of an intrinsically disordered domain followed by a folded segment. Using a photo-crosslinking-label transfer method, we captured three 19S RP subunits (Rpt1, Rpn2 and Rpn5) that bind the Ub-independent degron of Rpn4. This is the first time that specific 19S RP subunits have been identified interacting with a Ub-independent degron. This study provides insight into the mechanism by which Ub-independent substrates are recruited to the 26S proteasome.  相似文献   

14.
Pseudomonas aeruginosa exoenzyme S has appeared to be relatively indiscriminate in its choice of substrates, but in fact it ADP-ribosylates only a small subset of cellular proteins and exhibits a marked preference for several different membrane-associated proteins of apparent Mr = 23,000-25,000, at least some of which appear to bind GTP. One of these is the p21 product of the proto-oncogene c-H-ras, which can be labeled to completion. ADP-ribosylation does not alter the interaction of p21c-H-ras with guanyl nucleotides, but does cause a shift in electrophoretic mobility that implies a large conformational change. Exoenzyme S modifies all of its substrates at arginine residues.  相似文献   

15.
Recruitment of substrates to the 26S proteasome usually requires covalent attachment of the Lys48‐linked polyubiquitin chain. In contrast, modifications with the Lys63‐linked polyubiquitin chain and/or monomeric ubiquitin are generally thought to function in proteasome‐independent cellular processes. Nevertheless, the ubiquitin chain‐type specificity for the proteasomal targeting is still poorly understood, especially in vivo. Using mass spectrometry, we found that Rsp5, a ubiquitin‐ligase in budding yeast, catalyzes the formation of Lys63‐linked ubiquitin chains in vitro. Interestingly, the 26S proteasome degraded well the Lys63‐linked ubiquitinated substrate in vitro. To examine whether Lys63‐linked ubiquitination serves in degradation in vivo, we investigated the ubiquitination of Mga2‐p120, a substrate of Rsp5. The polyubiquitinated p120 contained relatively high levels of Lys63‐linkages, and the Lys63‐linked chains were sufficient for the proteasome‐binding and subsequent p120‐processing. In addition, Lys63‐linked chains as well as Lys48‐linked chains were detected in the 26S proteasome‐bound polyubiquitinated proteins. These results raise the possibility that Lys63‐linked ubiquitin chain also serves as a targeting signal for the 26S proteaseome in vivo.  相似文献   

16.
Import of secretory proteins into the Endoplasmic Reticulum (ER) is an established function of the Sec61 channel. The contribution of the Sec61 channel to export of misfolded proteins from the ER for degradation by proteasomes is still controversial, but the proteasome 19S regulatory particle (RP) is necessary and sufficient for extraction of specific misfolded proteins from the ER, and binds directly to the Sec61 channel. In this work we have identified an import-competent sec61 mutant, S353C, carrying a point mutation in ER-lumenal loop 7 which reduces affinity of the cytoplasmic face of the Sec61 channel for the 19S RP. This indicates that the interaction between the 19S RP and the Sec61 channel is dependent on conformational changes in Sec61p hinging on loop 7. The sec61-S353C mutant had no measurable ER import defects and did not cause ER stress in intact cells, but reduced ER-export of a 19S RP-dependent misfolded protein when proteasomes were limiting in a cell-free assay. Our data suggest that the interaction between the 19S RP and the Sec61 channel is essential for the export of specific substrates from the ER to the cytosol for proteasomal degradation.  相似文献   

17.
18.
Ribosomal proteins play a critical role in tightly coordinating p53 signaling with ribosomal biogenesis. Several ribosomal proteins have been shown to induce and activate p53 via inhibition of MDM2. Here, we report that S27a, a small subunit ribosomal protein synthesized as an 80-amino acid ubiquitin C-terminal extension protein (CEP80), functions as a novel regulator of the MDM2-p53 loop. S27a interacts with MDM2 at the central acidic domain of MDM2 and suppresses MDM2-mediated p53 ubiquitination, leading to p53 activation and cell cycle arrest. Knockdown of S27a significantly attenuates the p53 activation in cells in response to treatment with ribosomal stress-inducing agent actinomycin D or 5-fluorouracil. Interestingly, MDM2 in turn ubiquitinates S27a and promotes proteasomal degradation of S27a in response to actinomycin D treatment, thus forming a mutual-regulatory loop. Altogether, our results reveal that S27a plays a non-redundant role in mediating p53 activation in response to ribosomal stress via interplaying with MDM2.  相似文献   

19.
It is well known that S5a and hRpn13 are two major ubiquitin (Ub) receptors in the proteasome but little is known about their functional difference in recruiting ubiquitinated substrates. In this study using siRNA-mediated knockdown of S5a or hRpn13, we found that two Ub receptors had different substrate specificity although similar level of accumulation of high molecular weight Ub-conjugates was observed. Interesting enough, depletion of S5a, but not hRpn13, resulted in the Ub-containing aggregates and induced ER chaperones such as Grp78 and Grp94. ERAD substrates such as α-TCR and α1-antitrypsin were also stabilized by the depletion of S5a but not hRpn13. Our results suggest that there is different substrate specificity between S5a and hRpn13 at the level of delivery and S5a may be the major docking site for ERAD substrates.  相似文献   

20.
Parkin is a multidomain E3 ligase associated with autosomal recessive Parkinson disease. The N-terminal ubiquitin-like domain (Ubld) of parkin functions with the S5a proteasomal subunit, positioning substrate proteins for degradation. In addition the parkin Ubld recruits the endocytotic protein Eps15, allowing the E3 ligase to ubiquinate Eps15 distal from its parkin-interacting site. The recognition sequences in the S5a subunit and Eps15 for the parkin Ubld are ubiquitin-interacting motifs (UIM). Each protein has two UIM sequences separated by a 50-residue spacer in S5a, but only ∼5 residues in Eps15. In this work we used NMR spectroscopy to determine how the parkin Ubld recognizes the proteasomal subunit S5a compared with Eps15, a substrate for ubiquitination. We show that Eps15 contains two flexible α-helices each encompassing a UIM sequence. The α-helix surrounding UIM II is longer than that for UIM I, a situation that is reversed from S5a. Furthermore, we show the parkin Ubld preferentially binds to UIM I in the S5a subunit. This interaction is strongly diminished in a K48A substitution, found near the center of the S5a interacting surface on the parkin Ubld. In contrast to S5a, parkin recruits Eps15 using both its UIM sequences resulting in a larger interaction surface that includes residues from β1 and β2, not typically known to interact with UIM sequences. These results show that the parkin Ubld uses differential surfaces to recruit UIM regions from the S5a proteasomal subunit compared with Eps15 involved in cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号