首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee Y  Park HW  Park SG  Cho S  Myung PK  Park BC  Lee do H 《Proteomics》2007,7(2):185-193
In the present study, we have investigated the proteome changes associated with glutamate-induced HT22 cell death, a model system to study oxidative stress-mediated toxicity. Among a number of HT22 proteins exhibiting altered expression, several molecular chaperones demonstrated substantial changes. For example, the levels of Hsp90 and Hsp70 decreased as cell death progressed whereas that of Hsp60 increased dramatically. Interestingly, cytosolic Hsp60 increased more prominently than mitochondrial Hsp60. Concomitantly, the accumulation of poly-ubiquitylated proteins and differential regulation of the peptidase activities and the subunits of 26S proteasomes were observed in glutamate-treated HT22 cells. Our findings that the molecular chaperones and the ubiquitin-proteasome system undergo changes during glutamate-induced HT22 cell death may suggest the importance of a protein quality control system in oxidative damage-mediated toxicity.  相似文献   

2.
Chloroquine, a widely used anti-malarial and anti-rheumatoid agent, has been reported to induce apoptotic and non-apoptotic cell death. Accumulating evidence now suggests that chloroquine can sensitize cancer cells to cell death and augment chemotherapy-induced apoptosis by inhibiting autophagy. However, chloroquine is reported to induce GM1 ganglioside accumulation in cultured cells at low μM concentrations and prevent damage to the blood brain barrier in mice. It remains unknown whether chloroquine has neuroprotective properties at concentrations below its reported ability to inhibit lysosomal enzymes and autophagy. In the present study, we demonstrated that chloroquine protected mouse hippocampal HT22 cells from glutamate-induced oxidative stress by attenuating production of excess reactive oxygen species. The concentration of chloroquine required to rescue HT22 cells from oxidative stress was much lower than that sufficient enough to induce cell death and inhibit autophagy. Chloroquine increased GM1 level in HT22 cells at low μM concentrations but glutamate-induced cell death occurred before GM1 accumulation, suggesting that GM1 induction is not related to the protective effect of chloroquine against glutamate-induced cell death. Interestingly, BD1047 and NE-100, sigma-1 receptor antagonists, abrogated the protective effect of chloroquine against glutamate-induced cell death and reactive oxygen species production. In addition, cutamesine (SA4503), a sigma-1 receptor agonist, prevented both glutamate-induced cell death and reactive oxygen species production. These findings indicate that chloroquine at concentrations below its ability to inhibit autophagy and induce cell death is able to rescue HT22 cells from glutamate-induced cell death by reducing excessive production of reactive oxygen species through sigma-1 receptors. These results suggest potential use of chloroquine, an established anti-malarial agent, as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases.  相似文献   

3.
Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We show that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and function at early time points after glutamate exposure. However, overexpression of SOD2 in these cells reduced the mitochondrial superoxide level, protected mitochondrial morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochondria are important early targets of glutamate-induced oxidative neurotoxicity.  相似文献   

4.
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H2TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.  相似文献   

5.
Glutamate-induced oxidative toxicity is mediated by glutathione depletion in the HT22 mouse hippocampal cell line. Previous results with pharmacological agents implicated the extracellular signal-regulated kinases-1/2 (ERK1/2) in glutamate toxicity in HT22 cells and immature embryonic rat cortical neurons. In this report, we definitively establish a role for ERK1/2 in oxidative toxicity using dominant negative MEK1 expression in transiently transfected HT22 cells to block glutamate-induced cell death. In contrast, chronic activation of ERK (i.e. brought about by transfection of constitutively active ERK2 chimera) is not sufficient to trigger HT22 cell death demonstrating that ERK1/2 activation is not sufficient for toxicity. Activation of ERK1/2 in HT22 cells has a distinct kinetic profile with an initial peak occurring between 30 min and 1 h of glutamate treatment and a second peak typically emerging after 6 h. We demonstrate here that the initial phase of ERK1/2 induction is because of activation of metabotropic glutamate receptor type I (mGluRI). ERK1/2 activation by mGluRI contributes to an HT22 cell adaptive response to oxidative stress as glutamate-induced toxicity is enhanced upon pharmacological inhibition of mGluRI. The protective effect of ERK1/2 activation at early times after glutamate treatment is mediated by a restoration of glutathione (GSH) levels that are reduced because of depletion of intracellular cysteine pools. Thus, ERK1/2 appears to play dual roles in HT22 cells acting as part of a cellular adaptive response during the initial phases of glutamate-induced oxidative stress and contributing to toxicity during later stages of stress.  相似文献   

6.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

7.
The present study investigated the role of autophagy, a cellular self-digestion process, in the cytotoxicity of antileukemic drug cytarabine towards human leukemic cell lines (REH, HL-60, MOLT-4) and peripheral blood mononuclear cells from leukemic patients. The induction of autophagy was confirmed by acridine orange staining of intracellular acidic vesicles, electron microscopy visualization of autophagic vacuoles, as well as by the increase in autophagic proteolysis and autophagic flux, demonstrated by immunoblot analysis of p62 downregulation and LC3-I conversion to autophagosome-associated LC3-II in the presence of proteolysis inhibitors, respectively. Moreover, the expression of autophagy-related genes Atg4, Atg5 and Atg7 was stimulated by cytarabine in REH cells. Cytarabine reduced the phosphorylation of the major negative regulator of autophagy, mammalian target of rapamycin (mTOR), and its downstream target p70S6 kinase in REH cells, which was associated with downregulation of mTOR activator Akt and activation of extracellular signal- regulated kinase. Cytarabine had no effect on the activation of mTOR inhibitor AMP-activated protein kinase. Leucine, an mTOR activator, reduced both cytarabine-induced autophagy and cytotoxicity. Accordingly, pharmacological downregulation of autophagy with bafilomycin A1 and chloroquine, or RNA interference-mediated knockdown of LC3β or p62, markedly increased oxidative stress, mitochondrial depolarization, caspase activation and subsequent DNA fragmentation and apoptotic death in cytarabine-treated REH cells. Cytarabine also induced mTOR-dependent cytoprotective autophagy in HL-60 and MOLT-4 leukemic cell lines, as well as primary leukemic cells, but not normal leukocytes. These data suggest that the therapeutic efficiency of cytarabine in leukemic patients could be increased by the inhibition of the mTOR-dependent autophagic response.  相似文献   

8.
Neuronal death induced by serum deprivation (SD) in HT22-cells was accompanied by a moderate activation of caspase-3, a prominent upregulation of AIF and its translocation into the nucleus. In addition protein levels of autophagy markers such as LC3 and beclin-1 were affected by SD. The ratio of LC3-II/LC3-I was significantly increased in serum deprived cultures. Furthermore, the addition of the pan-caspase inhibitor z-VAD(OMe)-FMK (zVAD) does not protect HT22-cells from SD-induced neurodegeneration. However, addition of the autophagy inhibitors such as 3-methyladenine (3-MA) or bafilomycin A1 (BafA1) provided a potentiation of cell death induced by SD. z-VAD and 3-MA in combination were not only ineffective in rescuing cells from the damaging effects of SD, but seem likely to act in synergy to potentiate slightly SD-induced cell death. The results of the current study suggest that SD induced predominantly caspase-independent apoptosis in hippocampal HT22 cells and that inhibition of autophagy is rather deleterious than protective.  相似文献   

9.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress, where an excess of extracellular glutamate inhibits import of cystine, a building block of the antioxidant glutathione. The subsequent decrease in glutathione then leads to the accumulation of reactive oxygen species (ROS) and programmed cell death. We used pharmacological compounds known to interact with heterotrimeric G-protein signalling and studied their effects on cell survival, morphology, and intracellular events that ultimately lead to cell death. Cholera toxin and phorbol esters were most effective and prevented cell death through independent pathways. Treating HT22 cells with cholera toxin attenuated the glutamate-induced accumulation of ROS and calcium influx. This was, at least in part, caused by an increase in glutathione due to improved uptake of cystine mediated by the induction of the glutamate/cystine-antiporter subunit xCT or, additionally, by the up-regulation of the antiapoptotic protein Bcl-2. Gs activation also protected HT22 cells from hydrogen peroxide or inhibition of glutathione synthesis by buthionine sulfoximine, and immature cortical neurones from oxidative glutamate toxicity. Thus, this pathway might be more generally implicated in protection from neuronal death by oxidative stress.  相似文献   

10.
Excessive glutamate level induces neuronal death in acute brain injuries and chronic neurodegenerative diseases. Natural compounds from medicinal and food plants have been attracting interest as a treatment for neurological disorders. Sanguiin H-11 (SH-11), a hydrolysable ellagitannin, inhibits neutrophil movement and nitric oxide -production. However, its neuroprotective effect has not been studied. Therefore, the present study examined the protective effect of SH-11 from Sanguisorbae radix and its mechanism against glutamate-induced death in HT22 cells. Our results showed that SH-11 possessed a strong antioxidant activity and prevented glutamate-induced death in HT22 cells. As a strong antioxidant, SH-11 significantly reduced glutamate-induced increases in intracellular reactive oxygen species accumulation and calcium ion influx. Western blotting analysis showed that glutamate-induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-related kinases 1/2, c-Jun N-terminal kinase, and p38, was significantly decreased by SH-11. Furthermore, SH-11 significantly decreased the number of annexin V-positive HT22 cells, which is indicating apoptotic cell death. In conclusion, our results suggested that SH-11 exerted a potent neuroprotective activity against glutamate-mediated apoptotic cell death by inhibiting oxidative stress-mediated MAPK activation.  相似文献   

11.
In the present study, we show that the large conductance calcium-activated potassium channel (BK(Ca) channel) inhibitor paxilline protects neuronal cells against glutamate-induced cell death. In our studies, we used HT22 mouse hippocampal cells as an experimental model and observed that the effect of paxilline was dose-dependent. We also found that other inhibitors of BK(Ca) channels, iberiotoxin and charybdotoxin, were not cytoprotective. Paxillinol, which is a structural analog of paxilline but does not inhibit BK(Ca) channel, also protected HT22 cells against glutamate-induced toxicity. These data suggest that the observed cytoprotection was not related to BK(Ca) channel inhibition by paxilline. In addition, paxilline neither restored glutathione levels nor reduced the amount of reactive oxygen species upon glutamate treatment. Our results suggest that paxilline protects neuronal HT22 cells against glutamate-induced cell death independently of BK(Ca) channel activity and oxidative stress induced by glutamate treatment.  相似文献   

12.
Members of the nuclear factor-κB (NF-κB)/Rel family (p50, p52, p65 (RelA), RelB and c-Rel) is sequestered in the cytoplasm through its tight association with the inhibitor of NF-κB (IκB). NF-κB has been shown to function as key regulators of either cell death or survival in neurons after activation of the cells by various extracellular signals. In the study presented here, we investigated whether the selective activation of diverse NF-κB/Rel family members in HT22 cells might lead to distinct effects on glutamate-induced cell death. Exposing HT22 cells to glutamate, which blocks cystine uptake into the cells via inhibition of the glutamate-cystine antiporter, resulted in a transient activation of IκB and NF-κB/Rel and caused delayed cell death. Aspirin, which has been shown to block phosphorylation of the IκB component of the cytoplasmic NF-κB complex, significantly suppressed glutamate-induced cell death, whereas the NF-κB decoy oligonucleotide potentiated it. The inhibition of NF-κB/Rel protein expression by antisense oligonucleotides showed that p65 is involved in glutamate-mediated cell death, whereas p50 is involved in inhibitory pathways of the cell death. These findings suggest that in HT22 cells, the balance between promoting and presenting cell death to glutamate-induced oxidative stress relies on the activation of distinct NF-κB proteins.  相似文献   

13.
Abstract : The benzoquinoid ansamycin geldanamycin interferes with many cell signaling pathways and is currently being evaluated as an anticancer agent. The main intracellular target of geldanamycin is the 90-kDa heat shock protein, hsp90. In this report we demonstrate that geldanamycin is effective at preventing glutamate-induced oxidative toxicity in the HT22 mouse hippocampal cell line, even if given 4 h after glutamate treatment. Geldanamycin prevents glutamate-induced internucleosomal DNA cleavage in the HT22 cells but does not reverse the depletion of glutathione levels brought about by glutamate treatment. Both anabolic and catabolic effects are generated by geldanamycin treatment of HT22 cells, as evidenced by the induction of hsp70 expression and degradation of c-Raf-1 protein, respectively. Thus, geldanamycin may provide an effective strategy for manipulating signaling pathways in neuronal cells that use hsp90 as they proceed through a programmed cell death pathway in response to oxidative stress.  相似文献   

14.
Vitamin K2 (menaquinone-4: VK2) is a potent inducer for apoptosis in leukemia cells in vitro. HL-60bcl-2 cells, which are derived from a stable transfectant clone of the human bcl-2 gene into the HL-60 leukemia cell line, show 5-fold greater expression of the Bcl-2 protein compared with HL-60neo cells, a control clone transfected with vector alone. VK2 induces apoptosis in HL-60neo cells, whereas HL-60bcl-2 cells are resistant to apoptosis induction by VK2 but show inhibition of cell growth along with an increase of cytoplasmic vacuoles during exposure to VK2. Electron microscopy revealed formation of autophagosomes and autolysosomes in HL-60bcl-2 cells after exposure to VK2. An increase of acid vesicular organelles (AVOs) detected by acridine orange staining for lysosomes as well as conversion of LC3B-I into LC3B-II by immunoblotting and an increased punctuated pattern of cytoplasmic LC3B by fluorescent immunostaining all supported induction of enhanced autophagy in response to VK2 in HL-60bcl-2 cells. However, during shorter exposure to VK2, the formation of autophagosomes was also prominent in HL-60neo cells although nuclear chromatin condensations and nuclear fragments were also observed at the same time. These findings indicated the mixed morphologic features of apoptosis and autophagy. Inhibition of autophagy by either addition of 3-methyladenine, siRNA for Atg7, or Tet-off Atg5 system all resulted in attenuation of VK2-incuded cell death, indicating autophagy-mediated cell death in response to VK2. These data demonstrate that autophagy and apoptosis can be simultaneously induced by VK2. However, autophagy becomes prominent when the cells are protected from rapid apoptotic death by a high expression level of Bcl-2.  相似文献   

15.
Autophagy has been described as a cellular response to stressful stimuli like starvation. One of its primary functions is to recycle amino acids from degraded proteins for cellular survival under nutrient deprived conditions. Autophagy is characterized by double membrane cytosolic vesicles called autophagosomes and prolonged autophagy is known to result in autophagic (Type II) cell death. Beclin-1 is involved in the regulation of autophagy in mammalian cells. This study examined the potential impact of knockdown of Beclin-1 in an autophagic response in HT22 neurons challenged with amino acid starvation (AAS). AAS exposure induced light chain-3 (LC-3)-immunopositive and monodansylcadaverine (MDC) fluorescent dye-labeled autophagosome formation in cell bodies as early as 3 h post-AAS in wild type cells. Elevated levels of the autophagosome-targeting LC3-II were also observed following AAS. In addition, neuronal death induced by AAS in HT22-cells led to a moderate activation of caspase-3, a slight upregulation of AIF and did not alter the HtrA2 levels. Autophagy inhibition by a knockdown of Beclin-1 significantly reduced AAS-induced LC3-II increase, reduced accumulation of autophagosomes, and potentiated AAS-mediated neuronal death. Collectively, this study shows that the both apoptotic and autophagic machineries are inducible in cultured hippocampal HT22 neurons subjected to AAS. Our data further show that attenuation of autophagy by a knockdown of Beclin-1 enhanced neurons susceptibility to proapoptotic signals induced by AAS and underlines that autophagy is per se a protective than a deleterious mechanism.  相似文献   

16.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. Transfection of SH-SY5Y cells with AMPK or LC3β shRNA, as well as treatment with pharmacological autophagy inhibitors suppressed, while mTOR inhibitor rapamycin potentiated 6-OHDA-induced oxidative stress and apoptotic cell death. 6-OHDA induced phosphorylation of p38 mitogen-activated protein (MAP) kinase in an AMPK-dependent manner, and pharmacological inhibition of p38 MAP kinase reduced neurotoxicity, but not AMPK activation and autophagy triggered by 6-OHDA. Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.  相似文献   

17.
18.
Glutamate-induced excitotoxicity and oxidative stress is a major causative factor in neuronal cell death in acute brain injuries and chronic neurodegenerative diseases. The prevention of oxidative stress is a potential therapeutic strategy. Therefore, in the present study, we aimed to examine a potential therapeutic agent and its protective mechanism against glutamate-mediated cell death. We first found that chebulinic acid isolated from extracts of the fruit of Terminalia chebula prevented glutamate-induced HT22 cell death. Chebulinic acid significantly reduced intracellular reactive oxygen species (ROS) production and Ca2+ influx induced by glutamate. We further demonstrated that chebulinic acid significantly decreased the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38, as well as inhibiting pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 protein expression. Moreover, we demonstrated that chebulinic acid significantly reduced the apoptosis induced by glutamate in HT22 cells. In conclusion, our results in this study suggest that chebulinic acid is a potent protectant against glutamate-induced neuronal cell death via inhibiting ROS production, Ca2+ influx, and phosphorylation of MAPKs, as well as reducing the ratio of Bax to Bcl-2, which contribute to oxidative stress-mediated neuronal cell death.  相似文献   

19.
We investigated the role of autophagy, a process of controlled self-digestion, in the in vitro anticancer action of the inosine monophosphate dehydrogenase (IMPDH) inhibitor ribavirin. Ribavirin-triggered oxidative stress, caspase activation, and apoptotic death in U251 human glioma cells were associated with the induction of autophagy, as confirmed by intracellular acidification, appearance of autophagic vesicles, conversion of microtubule associated protein 1 light chain 3 (LC3)-I to autophagosome-associated LC3-II, and degradation of autophagic target p62/sequestosome 1. Ribavirin downregulated the activity of autophagy-inhibiting mammalian target of rapamycin complex 1 (mTORC1), as indicated by a decrease in phosphorylation of the mTORC1 substrate ribosomal p70S6 kinase and reduction of the mTORC1-activating Src/Akt signaling. Guanosine supplementation inhibited, while IMPDH inhibitor tiazofurin mimicked ribavirin-mediated autophagy induction, suggesting the involvement of IMPDH blockade in the observed effect. Autophagy suppression by ammonium chloride, bafilomycin A1, or RNA interference-mediated knockdown of LC3 sensitized glioma cells to ribavirin-induced apoptosis. Ribavirin also induced cytoprotective autophagy associated with Akt/mTORC1 inhibition in C6 rat glioma cells. Our data demonstrate that ribavirin-triggered Akt/mTORC1-dependent autophagy counteracts apoptotic death of glioma cells, indicating autophagy suppression as a plausible therapeutic strategy for sensitization of cancer cells to IMPDH inhibition.  相似文献   

20.
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously, we found that neuroprotective effects of geldanamycin, a benzoquinone ansamycin, in HT22 cells were associated with a down-regulation of c-Raf-1, an upstream activator of the extracellular signal-regulated protein kinases (ERKs). ERK activation, although often attributed strictly to neuronal cell survival and proliferation, can also be associated with neuronal cell death that occurs in response to specific insults. In this report we show that delayed and persistent activation of ERKs is associated with glutamate-induced oxidative toxicity in HT22 cells and immature primary cortical neuron cultures. Furthermore, we find that U0126, a specific inhibitor of the ERK-activating kinase, MEK-1/2, protects both HT22 cells and immature primary cortical neuron cultures from glutamate toxicity. Glutamate-induced ERK activation requires the production of specific arachidonic acid metabolites and appears to be downstream of a burst of reactive oxygen species (ROS) accumulation characteristic of oxidative stress in HT22 cells. However, inhibition of ERK activation reduces glutamate-induced intracellular Ca(2+) accumulation. We hypothesize that the precise kinetics and duration of ERK activation may determine whether downstream targets are mobilized to enhance neuronal cell survival or ensure cellular demise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号