首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in the nuclear envelope (NE), through which exchange of molecules between the nucleus and cytosol occurs. Biogenesis of NPCs is complex and poorly understood. In particular, almost nothing is known about how NPCs are anchored in the NE. Here, we characterize vertebrate NDC1--a transmembrane nucleoporin conserved between yeast and metazoans. We show by RNA interference (RNAi) and biochemical depletion that NDC1 plays an important role in NPC and NE assembly in vivo and in vitro. RNAi experiments suggest a functional link between NDC1 and the soluble nucleoporins Nup93, Nup53, and Nup205. Importantly, NDC1 interacts with Nup53 in vitro. This suggests that NDC1 function involves forming a link between the NE membrane and soluble nucleoporins, thereby anchoring the NPC in the membrane.  相似文献   

2.
We report a novel connection between nuclear pore complexes (NPCs) and spindle pole bodies (SPBs) revealed by our studies of the Saccharomyces cerevisiae NDC1 gene. Although both NPCs and SPBs are embedded in the nuclear envelope (NE) in yeast, their known functions are quite distinct. Previous work demonstrated that NDC1 function is required for proper SPB duplication (Winey, M., M.A. Hoyt, C. Chan, L. Goetsch, D. Botstein, and B. Byers. 1993. J. Cell Biol. 122:743–751). Here, we show that Ndc1p is a membrane protein of the NE that localizes to both NPCs and SPBs. Indirect immunofluorescence microscopy shows that Ndc1p displays punctate, nuclear peripheral localization that colocalizes with a known NPC component, Nup49p. Additionally, distinct spots of Ndc1p localization colocalize with a known SPB component, Spc42p. Immunoelectron microscopy shows that Ndc1p localizes to the regions of NPCs and SPBs that interact with the NE. The NPCs in ndc1-1 mutant cells appear to function normally at the nonpermissive temperature. Finally, we have found that a deletion of POM152, which encodes an abundant but nonessential nucleoporin, suppresses the SPB duplication defect associated with a mutation in the NDC1 gene. We show that Ndc1p is a shared component of NPCs and SPBs and propose a shared function in the assembly of these organelles into the NE.  相似文献   

3.
Both the spindle pole body (SPB) and the nuclear pore complex (NPC) are essential organelles embedded in the nuclear envelope throughout the life cycle of the budding yeast Saccharomyces cerevisiae. However, the mechanism by which these two multisubunit structures are inserted into the nuclear envelope during their biogenesis is not well understood. We have previously shown that Ndc1p is the only known integral membrane protein that localizes to both the SPBs and the NPCs and is required for SPB duplication. For this study, we generated a novel temperature-sensitive (ts) allele of NDC1 to investigate the role of Ndc1p at the NPCs. Yeast cells carrying this allele (ndc1-39) failed to insert the SPB into the nuclear envelope at the restrictive temperature. Importantly, the double mutation of ndc1-39 and NPC assembly mutant nic96-1 resulted in cells with enhanced growth defects. While nuclear protein import and NPC distribution in the nuclear envelope were unaffected, ndc1-39 mutants failed to properly incorporate the nucleoporin Nup49p into NPCs. These results provide evidence that Ndc1p is required for NPC assembly in addition to its role in SPB duplication. We postulate that Ndc1p is crucial for the biogenesis of both the SPBs and the NPCs at the step of insertion into the nuclear envelope.  相似文献   

4.
Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.  相似文献   

5.
During mitosis in higher eukaryotes, nuclear pore complexes (NPCs) disassemble in prophase and are rebuilt in anaphase and telophase. NPC formation is hypothesized to occur by the interaction of mitotically stable subcomplexes that form defined structural intermediates. To determine the sequence of events that lead to breakdown and reformation of functional NPCs during mitosis, we present here our quantitative assay based on confocal time-lapse microscopy of single dividing cells. We use this assay to systematically investigate the kinetics of dis- and reassembly for eight nucleoporin subcomplexes relative to nuclear transport in NRK cells, linking the assembly state of the NPC with its function. Our data establish that NPC assembly is an ordered stepwise process that leads to import function already in a partially assembled state. We furthermore find that nucleoporin dissociation does not occur in the reverse order from binding during assembly, which may indicate a distinct mechanism.  相似文献   

6.
Triple A syndrome is caused by mutations in AAAS encoding the protein ALADIN. We investigated the role of ALADIN in the human adrenocortical cell line NCI-H295R1 by either over-expression or down-regulation of ALADIN. Our findings indicate that AAAS knock-down induces a down-regulation of genes coding for type II microsomal cytochrome P450 hydroxylases CYP17A1 and CYP21A2 and their electron donor enzyme cytochrome P450 oxidoreductase, thereby decreasing biosynthesis of precursor metabolites required for glucocorticoid and androgen production. Furthermore we demonstrate that ALADIN deficiency leads to increased susceptibility to oxidative stress and alteration in redox homeostasis after paraquat treatment. Finally, we show significantly impaired nuclear import of DNA ligase 1, aprataxin and ferritin heavy chain 1 in ALADIN knock-down cells. We conclude that down-regulating ALADIN results in decreased oxidative stress response leading to alteration in steroidogenesis, highlighting our knock-down cell model as an important in-vitro tool for studying the adrenal phenotype in triple A syndrome.  相似文献   

7.
Frey S  Görlich D 《Cell》2007,130(3):512-523
The permeability barrier of nuclear pore complexes (NPCs) controls the exchange between nucleus and cytoplasm. It suppresses the flux of inert macromolecules > or = 30 kDa but allows rapid passage of even very large cargoes, provided these are bound to appropriate nuclear transport receptors. We show here that a saturated hydrogel formed by a single nucleoporin FG-repeat domain is sufficient to reproduce the permeability properties of NPCs. Importin beta and related nuclear transport receptors entered such hydrogel >1000x faster than a similarly sized inert macromolecule. The FG-hydrogel even reproduced import signal-dependent and importin-mediated cargo influx, allowing importin beta to accelerate the gel entry of a large cognate cargo more than 20,000-fold. Intragel diffusion of the importin beta-cargo complex occurred rapidly enough to traverse an NPC within approximately 12 ms. We extend the "selective phase model" to explain these effects.  相似文献   

8.
Nuclear pore complexes (NPCs) provide a gateway for the selective transport of macromolecules across the nuclear envelope (NE). Although we have a solid understanding of NPC composition and structure, we do not have a clear grasp of the mechanism of NPC assembly. Here, we demonstrate specific defects in nucleoporin distribution in strains lacking Heh1p and Heh2p-two conserved members of the LEM (Lap2, emerin, MAN1) family of integral inner nuclear membrane proteins. These effects on nucleoporin localization are likely of functional importance as we have defined specific genetic interaction networks between HEH1 and HEH2, and genes encoding nucleoporins in the membrane, inner, and outer ring complexes of the NPC. Interestingly, expression of a domain of Heh1p that resides in the NE lumen is sufficient to suppress both the nucleoporin mislocalization and growth defects in heh1Δpom34Δ strains. We further demonstrate a specific physical interaction between the Heh1p lumenal domain and the massive cadherin-like lumenal domain of the membrane nucleoporin Pom152p. These findings support a role for Heh1p in the assembly or stability of the NPC, potentially through the formation of a lumenal bridge with Pom152p.  相似文献   

9.
Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patient fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study.  相似文献   

10.
POM121 and gp210 were, until this point, the only known membrane-integral nucleoporins (Nups) of vertebrates and, thus, the only candidate anchors for nuclear pore complexes (NPCs) within the nuclear membrane. In an accompanying study (Stavru et al.), we provided evidence that NPCs can exist independently of POM121 and gp210, and we predicted that vertebrate NPCs contain additional membrane-integral constituents. We identify such an additional membrane protein in the NPCs of mammals, frogs, insects, and nematodes as the orthologue to yeast Ndc1p/Cut11p. Human NDC1 (hNDC1) likely possesses six transmembrane segments, and it is located at the nuclear pore wall. Depletion of hNDC1 from human HeLa cells interferes with the assembly of phenylalanine-glycine repeat Nups into NPCs. The loss of NDC1 function in Caenorhabditis elegans also causes severe NPC defects and very high larval and embryonic mortality. However, it is not ultimately lethal. Instead, homozygous NDC1-deficient worms can be propagated. This indicates that none of the membrane-integral Nups is universally essential for NPC assembly, and suggests that NPC biogenesis is an extremely fault-tolerant process.  相似文献   

11.
Nuclear pore complexes (NPCs) span the nuclear envelope and mediate communication between the nucleus and the cytoplasm. To obtain insight into the structure and function of NPCs of multicellular organisms, we have initiated an extensive analysis of Caenorhabditis elegans nucleoporins. Of 20 assigned C. elegans nucleoporin genes, 17 were found to be essential for embryonic development either alone or in combination. In several cases, depletion of nucleoporins by RNAi caused severe defects in nuclear appearance. More specifically, the C. elegans homologs of vertebrate Nup93 and Nup205 were each found to be required for normal NPC distribution in the nuclear envelope in vivo. Depletion of Nup93 or Nup205 caused a failure in nuclear exclusion of nonnuclear macromolecules of approximately 70 kDa without preventing active nuclear protein import or the assembly of the nuclear envelope. The defects in NPC exclusion were accompanied by abnormal chromatin condensation and early embryonic arrest. Thus, the contribution to NPC structure of Nup93 and Nup205 is essential for establishment of normal NPC function and for cell viability.  相似文献   

12.
We employed a phage display system to search for proteins that interact with transportin 1 (TRN1), the import receptor for shuttling hnRNP proteins with an M9 nuclear localization sequence (NLS), and identified a short region within the N-terminus of the nucleoporin Nup153 which binds TRN1. Nup153 is located at the nucleoplasmic face of the nuclear pore complex (NPC), in the distal basket structure, and functions in mRNA export. We show that this Nup153 TRN1-interacting region is an M9 NLS. We found that both import and export receptors interact with several regions of Nup153, in a RanGTP-regulated fashion. RanGTP dissociates Nup153-import receptor complexes, but is required for Nup153-export receptor interactions. We also show that Nup153 is a RanGDP-binding protein, and that the interaction is mediated by the zinc finger region of Nup153. This represents a novel Ran-binding domain, which we term the zinc finger Ran-binding motif. We provide evidence that Nup153 shuttles between the nuclear and cytoplasmic faces of the NPC. The presence of an M9 shuttling domain in Nup153, together with its ability to move within the NPC and to interact with export receptors, suggests that this nucleoporin is a mobile component of the pore which carries export cargos towards the cytoplasm.  相似文献   

13.
The nuclear pore complexes (NPCs) are evolutionarily conserved assemblies that allow traffic between the cytoplasm and the nucleus. In this study, we have identified and characterized a novel human nuclear pore protein, hNup133, through its homology with the Saccharomyces cerevisiae nucleoporin scNup133. Two-hybrid screens and immunoprecipitation experiments revealed a direct and evolutionarily conserved interaction between Nup133 and Nup84/Nup107 and indicated that hNup133 and hNup107 are part of a NPC subcomplex that contains two other nucleoporins (the previously characterized hNup96 and a novel nucleoporin designated as hNup120) homologous to constituents of the scNup84 subcomplex. We further demonstrate that hNup133 and hNup107 are localized on both sides of the NPC to which they are stably associated at interphase, remain associated as part of a NPC subcomplex during mitosis, and are targeted at early stages to the reforming nuclear envelope. Throughout mitosis, a fraction of hNup133 and hNup107 localizes to the kinetochores, thus revealing an unexpected connection between structural NPCs constituents and kinetochores. Photobleaching experiments further showed that the mitotic cytoplasm contains kinetochore-binding competent hNup133 molecules and that in contrast to its stable association with the NPCs the interaction of this nucleoporin with kinetochores is dynamic.  相似文献   

14.
Matsuura Y  Stewart M 《The EMBO journal》2005,24(21):3681-3689
Nuclear import of proteins containing classical nuclear localization signals (NLS) is mediated by the importin-alpha:beta complex that binds cargo in the cytoplasm and facilitates its passage through nuclear pores, after which nuclear RanGTP dissociates the import complex and the importins are recycled. In vertebrates, import is stimulated by nucleoporin Nup50, which has been proposed to accompany the import complex through nuclear pores. However, we show here that the Nup50 N-terminal domain actively displaces NLSs from importin-alpha, which would be more consistent with Nup50 functioning to coordinate import complex disassembly and importin recycling. The crystal structure of the importin-alpha:Nup50 complex shows that Nup50 binds at two sites on importin-alpha. One site overlaps the secondary NLS-binding site, whereas the second extends along the importin-alpha C-terminus. Mutagenesis indicates that interaction at both sites is required for Nup50 to displace NLSs. The Cse1p:Kap60p:RanGTP complex structure suggests how Nup50 is then displaced on formation of the importin-alpha export complex. These results provide a rationale for understanding the series of interactions that orchestrate the terminal steps of nuclear protein import.  相似文献   

15.
The human genome encodes six isoforms of importin α that show greater than 60% sequence similarity and remarkable substrate specificity. The isoform importin α5 can bind phosphorylated cargos such as STAT1 and Epstein-Barr Virus Nuclear Antigen 1, as well as the influenza virus polymerase subunit PB2. In this work, we have studied the interaction of the nucleoporin Nup50 with importin α5. We show that the first 47 residues of Nup50 bind to the C terminus of importin α5 like a "clip," stabilizing the closed conformation of ARM 10. In vitro, Nup50 binds with high affinity either to empty importin α5 or to a preassembled complex of importin α5 bound to the C-terminal domain of the import cargo PB2, resulting in a trimeric complex. By contrast, PB2 can only bind with high affinity to importin α5 in the absence of Nup50. This suggests that Nup50 primary function may not be to actively displace the import cargo from importin α5 but rather to prevent cargo rebinding in preparation for recycling. This is the first evidence for a nucleoporin modulating the import reaction by directly altering the three-dimensional structure of an import adaptor.  相似文献   

16.
Interactions between Nup50 and soluble transport factors underlie the efficiency of certain nucleocytoplasmic transport pathways. The platform on which these interactions take place is important to building a complete understanding of nucleocytoplasmic trafficking. Nup153 is the nucleoporin that provides this scaffold for Nup50. Here, we have delineated requirements for the interaction between Nup153 and Nup50, revealing a dual interface. An interaction between Nup50 and a region in the unique N-terminal region of Nup153 is critical for the nuclear pore localization of Nup50. A second site of interaction is at the distal tail of Nup153 and is dependent on importin α. Both of these interactions involve the N-terminal domain of Nup50. The configuration of the Nup153-Nup50 partnership suggests that the Nup153 scaffold provides not just a means of pore targeting for Nup50 but also serves to provide a local environment that facilitates bringing Nup50 and importin α together, as well as other soluble factors involved in transport. Consistent with this, disruption of the Nup153-Nup50 interface decreases efficiency of nuclear import.  相似文献   

17.
The association of small, ubiquitin-related modifier-specific isopeptidases (also known as sentrin-specific proteases, or SENPs) with nuclear pore complexes (NPCs) is conserved in eukaryotic organisms ranging from yeast to mammals. However, the functional significance of this association remains poorly understood, particularly in mammalian cells. In this study, we have characterized the molecular basis for interactions between SENP2 and NPCs in human cells. Using fluorescence recovery after photobleaching, we demonstrate that SENP2, although concentrated at the nuclear basket, is dynamically associated with NPCs. This association is mediated by multiple targeting elements within the N-terminus of SENP2 that function cooperatively to mediate NPC localization. One of these elements consists of a high-affinity nuclear localization signal that mediates indirect tethering to FG-repeat-containing nucleoporins through karyopherins. A second element mediates interactions with the Nup107-160 nucleoporin subcomplex. A third element consists of a nuclear export signal. Collectively, our findings reveal that SENP2 is tethered to NPCs through a complex interplay of interactions with nuclear import and export receptors and nucleoporins. Disruption of these interactions enhances SENP2 substrate accessibility, suggesting an important regulatory node in the SUMO pathway.  相似文献   

18.
Nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. The simplicity and specialization of this system, combined with the availability of crystal structures of NTF2, RanGDP and their complex, has facilitated the investigation of the molecular mechanism of its trafficking. NTF2 binds to both RanGDP and FxFG repeat-containing nucleoporins. Mutants engineered on the basis of structural information together with determination of binding constants have been used to dissect the roles of these interactions in transport. Thus, NTF2 binds to RanGDP sufficiently strongly for the complex to remain intact during transport through NPCs, but the interaction between NTF2 and FxFG nucleoporins is much more transient, which would enable NTF2 to move through the NPC by hopping from one repeat to another. An analogous nucleoporin hopping mechanism may also be used by carrier molecules of the importin-beta family to move through NPCs.  相似文献   

19.
Nuclear pore complexes (NPCs) are built from ~30 different proteins called nucleoporins or Nups. Previous studies have shown that several Nups exhibit cell-type-specific expression and that mutations in NPC components result in tissue-specific diseases. Here we show that a specific change in NPC composition is required for both myogenic and neuronal differentiation. The transmembrane nucleoporin Nup210 is absent in proliferating myoblasts and embryonic stem cells (ESCs) but becomes expressed and incorporated into NPCs during cell differentiation. Preventing Nup210 production by RNAi blocks myogenesis and the differentiation of ESCs into neuroprogenitors. We found that the addition of Nup210 to NPCs does not affect nuclear transport but is required for the induction of genes that are essential for cell differentiation. Our results identify a single change in NPC composition as an essential step in cell differentiation and establish a role for Nup210 in gene expression regulation and cell fate determination.  相似文献   

20.
The nuclear pore complex (NPC) is a large proteinaceous structure through which bidirectional transport of macromolecules across the nuclear envelope (NE) takes place. Nup153 is a peripheral NPC component that has been implicated in protein and RNP transport and in the interaction of NPCs with the nuclear lamina. Here, Nup153 is localized by immunogold electron microscopy to a position on the nuclear ring of the NPC. Nuclear reconstitution is used to investigate the role of Nup153 in nucleo- cytoplasmic transport and NPC architecture. NPCs assembled in the absence of Nup153 lacked several nuclear basket components, were unevenly distributed in the NE and, unlike wild-type NPCs, were mobile within the NE. Importin alpha/beta-mediated protein import into the nucleus was strongly reduced in the absence of Nup153, while transportin-mediated import was unaffected. This was due to a reduction in import complex translocation rather than to defective receptor recycling. Our results therefore reveal functions for Nup153 in NPC assembly, in anchoring NPCs within the NE and in mediating specific nuclear import events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号