首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the red marine alga Furcellaria lumbricalis (Huds.) Lamour, a novel betaine has been isolated and characterised from infra-red and nuclear magnetic resonance spectroscopic and mass spectrometric data astrans-4-hydroxy-β-prolinebetaine.  相似文献   

2.
Abstract

The utility of urinary trans-3′-hydroxy cotinine (3HC) as a biomarker of environmental tobacco smoke (ETS) exposure was investigated in comparison with urinary cotinine (COT), the sum (3HC?+?COT), and ratio of the two nicotine metabolites (3HC/COT). Participants were 150 ETS exposed children (aged 1–44 months) and their parents. Child urine samples were collected during 3weekly baseline assessments and at interviews administered 3, 6, 12, and 18 months after baseline. Findings indicate that 3HC and COT can be measured reliably (rho?=?0.96, 0.88) and show equivalent levels of repeated measures stability (rho?=?0.71, 0.75). COT, 3HC, and 3HC?+?COT showed equally strong associations with air nicotine levels, reported ETS contamination, and reported ETS exposure (r=0.60–0.70). The intraclass correlations of 3HC/COT were lower than those for COT or 3HC. Older children had a higher 3HC/COT ratio than younger children (3.5 versus 2.2), and non-Hispanic White children had a higher ratio than African-American children (3.2 versus 1.9). These findings suggest that COT, 3HC, and 3HC?+?COT are approximately equivalent and equally strong biomarkers of ETS exposure in children. Moreover, 3HC/COT may provide a useful indicator to investigate age- and race-related differences in the metabolism of COT and 3HC.  相似文献   

3.
Decavanadate, an inorganic polymer of vanadate, produced contraction of rat aortic rings at a relatively high concentration compared to phenylephrine, an agonist of -adrenergic receptor. This effect was blocked by two known a-adrenergic receptor antagonists, prazosin and phenoxybenzamine. Decavanadate, formed by possible dimerization of V5 under acid conditions, possessed a structural feature of two pairs of unshared oxygen atoms at a distance of 3.12 Å, not found in its constituents of V4 or V5. A structural motif of O..O..O using such oxygen atoms is recognized in decavanadate. This matches with a similar motif of N..O..O that uses the essential amino and hydroxyl groups of the side-chain and the m-hydroxyl group in trans-b form of noradrenaline. The interaction of such a structural motif with the membrane receptor is likely to be the basis of the unusual noradrenaline-mimic action of decavanadate.  相似文献   

4.
Cell‐wall components are hydrolysed by numerous plant glycosidase and glycanase activities. We investigated whether plant enzymes also modify xyloglucan structures by transglycosidase activities. Diverse angiosperm extracts exhibited transglycosidase activities that progressively transferred single sugar residues between xyloglucan heptasaccharide (XXXG or its reduced form, XXXGol) molecules, at 16 μm and above, creating octa‐ to decasaccharides plus smaller products. We measured remarkably high transglycosylation:hydrolysis ratios under optimized conditions. To identify the transferred monosaccharide(s), we devised a dual‐labelling strategy in which a neutral radiolabelled oligosaccharide (donor substrate) reacted with an amino‐labelled non‐radioactive oligosaccharide (acceptor substrate), generating radioactive cationic products. For example, 37 μm [Xyl3H]XXXG plus 1 mm XXLG‐NH2 generated 3H‐labelled cations, demonstrating xylosyl transfer, which exceeded xylosyl hydrolysis 1.6‐ to 7.3‐fold, implying the presence of enzymes that favour transglycosylation. The transferred xylose residues remained α‐linked but were relatively resistant to hydrolysis by plant enzymes. Driselase digestion of the products released a trisaccharide (α‐[3H]xylosyl‐isoprimeverose), indicating that a new xyloglucan repeat unit had been formed. In similar assays, [Gal3H]XXLG and [Gal3H]XLLG (but not [Fuc3H]XXFG) yielded radioactive cations. Thus plants exhibit trans‐α‐xylosidase and trans‐β‐galactosidase (but not trans‐α‐fucosidase) activities that graft sugar residues from one xyloglucan oligosaccharide to another. Reconstructing xyloglucan oligosaccharides in this way may alter oligosaccharin activities or increase their longevity in vivo. Trans‐α‐xylosidase activity also transferred xylose residues from xyloglucan oligosaccharides to long‐chain hemicelluloses (xyloglucan, water‐soluble cellulose acetate, mixed‐linkage β‐glucan, glucomannan and arabinoxylan). With xyloglucan as acceptor substrate, such an activity potentially affects the polysaccharide’s suitability as a substrate for xyloglucan endotransglucosylase action and thereby modulates cell expansion. We conclude that certain proteins annotated as glycosidases can function as transglycosidases.  相似文献   

5.
Etiolated seedlings developed at cold-hardening temperatures (5°C) exhibited etioplasts with considerable vesiculation of internal membranes compared to etioplasts developed at 20°C regardless of the osmotic concentration employed during sample preparation. This vesiculation disappeared during exposure to continuous light at 5°C. This transformation of 5°C and 20°C etioplasts to chloroplasts under continuous light at 5° and 20°C respectively proceeded normally with the initial development of non-appressed lamellae and the subsequent appearance of granal stacks. However, chloroplasts developed at 5°C exhibited fewer lamellae per granum than chloroplasts developed at 20°C.Although the polypeptide complements of etioplasts and chloroplasts developed at 5° or 20°C were not significantly different, monomeric light harvesting complex (LHCII3) was assembled into oligomeric light harvesting complex (LHCII1) during chloroplast biogenesis at 20°C (oligomer:monomer =1.8) whereas monomeric LHCII predominated at 5°C (oligomer:monomer =0.3). Low temperature fluorescence emission spectra of isolated thylakoids indicated that both the F685/F735 and F695/F735 were significantly higher after greening at 5°C than at 20°C. In addition, chloroplast biogenesis at 5°C was associated with a low ratio of trans-3-hexadecenoic acid (0.5) in phosphatidylglycerol whereas at 20°C biogenesis was associated with a high ratio (1.6). Comparative kinetics indicated that the maximization of the trans-3-hexadecenoic acid level precedes the assembly of monomeric LHCII into oligomeric LHCII during biogenesis at 20°C. It is suggested that low developmental temperatures modulate the assembly of LHCII by reducing the trans-3-hexadecenoic acid content of phosphatidylglycerol such that monomeric or some intermediate form of LHCII predominates.Abbreviations RH Cold-hardened rye - RNH Non-hardened rye - EF Exoplasmic freeze fracture face - Chl Chlorophyll - LHCII Light harvesting Chl a/b protein complex - LHCII1 Oligomeric form - LHCII2 Dimeric form - LHCII3 Monomeric form - CPl Chl a-protein complex associated with photosystem I - CPa Chl a-protein comples associated with photosystem II - FP Free pigment - PSI Photosystem I - PSII Photosystem II - Trans-16:1 Trans-3-hexadecenoic acid - 16:0 Palmitic acid - 18:3 Linolenic acid - PG Phosphatidylglycerol - PC Phosphatidylcholine - PE Phosphatidylethanolamine - SL Sulfolipid - DGDG Digalactosyldiacylglycerol - MGDG Monogalactosyldiacylglycerol - SDS Sodium dodecyl sulfate - PAGE Polyacrylamide gel electrophoresis - PLB Prolamellar body - A Angstrom - DOC deoxycholate  相似文献   

6.
In an attempt to understand the microorganisms involved in the generation of trans-1,2-dichloroethene (trans-DCE), pure-culture “Dehalococcoides” sp. strain MB was isolated from environmental sediments. In contrast to currently known tetrachloroethene (PCE)- or trichloroethene (TCE)-dechlorinating pure cultures, which generate cis-DCE as the predominant product, Dehalococcoides sp. strain MB reductively dechlorinates PCE to trans-DCE and cis-DCE at a ratio of 7.3 (±0.4):1. It utilizes H2 as the sole electron donor and PCE or TCE as the electron acceptor during anaerobic respiration. Strain MB is a disc-shaped, nonmotile bacterium. Under an atomic force microscope, the cells appear singly or in pairs and are 1.0 μm in diameter and ∼150 nm in depth. The purity was confirmed by culture-based approaches and 16S rRNA gene-based analysis and was corroborated further by putative reductive dehalogenase (RDase) gene-based, quantitative real-time PCR. Although strain MB shares 100% 16S rRNA gene sequence identity with Dehalococcoides ethenogenes strain 195, these two strains possess different dechlorinating pathways. Microarray analysis revealed that 10 putative RDase genes present in strain 195 were also detected in strain MB. Successful cultivation of strain MB indicates that the biotic process could contribute significantly to the generation of trans-DCE in chloroethene-contaminated sites. It also enhances our understanding of the evolution of this unusual microbial group, Dehalococcoides species.Dehalorespiring bacteria play an important role in the transformation and detoxification of a wide range of halogenated compounds, e.g., chlorophenols, chloroethenes, chlorobenzenes, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) (2, 4, 9, 14, 16, 17, 32, 35, 38). Among these compounds, the organic solvents tetrachloroethene (PCE) and trichloroethene (TCE) are suspected carcinogens that are found in soil and groundwater due to their extensive usage and improper disposal (6). The widespread PCE and TCE in the subsurface environment have driven intensive studies of anaerobic microbes capable of reductive dechlorination of chloroethenes (40). Over the last decade, at least 18 isolates, which belong to the genera Desulfitobacterium, Sulfurospirillum, Desulfomonile, Desulfuromonas, Geobacter, “Dehalococcoides,” and Dehalobacter, show reductive dechlorination of chlorinated ethenes (16, 40). In particular, most of these microbes produce cis-1,2-dichloroethene (cis-DCE) as the end product in the chloroethene-contaminated sites, whereas complete detoxification of PCE or TCE to ethene has been restricted only to members of the genus Dehalococcoides. Thus, the Dehalococcoides species have received considerable attention from the bioremediation community in the past decade.Several strains of Dehalococcoides species (e.g., 195, CBDB1, BAV1, and VS) have been sequenced for their whole genomes (24, 39). Their dechlorinating capabilities have also been well addressed through identification and quantification of the known chloroethene reductive dehalogenase (RDase) genes or expression of specific RDase genes (18, 21, 25, 41). In chloroethene-contaminated sites, the natural activities of single or multiple Dehalococcoides strains can lead either to more-toxic, mobile intermediates (e.g., cis- or trans-DCEs and vinyl chloride [VC]) via partial dechlorination of PCE/TCE or to harmless ethene by complete detoxification (10, 13, 15, 41). Many mixed cultures and pure isolates have been reported to produce cis-DCE or VC during PCE/TCE dechlorination processes (15, 40, 43). However, trans-DCE has been detected in more than one-third of the U.S. Environmental Protection Agency (EPA) superfund sites (3a). The source of trans-DCE production was thought to be an abiotic process; however, recently both trans-DCE generation and cis-DCE generation were reported to occur via microbial dechlorination.To date, microbes from either Dehalococcoides- or DF-1-containing mixed cultures have been reported to produce more trans- than cis-DCE, with a ratio of 1.2:1 to 3.5:1 in laboratory-scale studies (8, 10, 22, 31). For example, in a recent report by Kittelmann and Friedrich (22), trans-/cis-DCE at a ratio of 3.5:1 was generated in tidal flat sediment-containing microcosms with microbes closely related to Dehalococcoides sp. or DF-1-like microbes. Additionally, Griffin et al. identified Dehalococcoides species of the Pinellas subgroup in several enrichment cultures, which dechlorinated TCE (∼0.25 mM) to trans-DCE and cis-DCE at a ratio of ∼3:1 (10). There is no information available on the Dehalococcoides isolates that generate trans-DCE as the main end product. This also means a lack of information on the genomic contents of trans-DCE-producing bacteria. Therefore, finding microorganisms that produce trans-DCE in pure culture will be useful for the comprehensive characterization of this group of bacteria.The aim of this study was to isolate a PCE-to-trans-DCE-dechlorinating culture to facilitate the elucidation of trans-DCE formation during reductive dechlorination processes. Microarray analysis was conducted to compare the whole-genome contents of the new isolate and the well-characterized Dehalococcoides ethenogenes strain 195 (30). In addition, a coculture which consisted of the new isolate and TCE-to-cis-DCE-to-VC-dechlorinating Dehalococcoides sp. strain ANAS1 was explored to study the interaction, distribution, and function of the dechlorinators in the dechlorinating process.  相似文献   

7.
Possible roles of trans3-hexadecenoic acid containing phosphatidylglycerol (PG) in the organisation of photosynthetic complexes were studied using two mutants of Chlamydomonas reinhardtii, mf1 and mf2, that totally lack this lipid and in which the level of the others remaining PG was consequently reduced to about 30% of the wild-type. Both the mutants have lost the capacity to stabilise the light-harvesting chlorophyll a/b–protein complex LHC II in a trimeric state and display an increased instability of the PS I light-harvesting-core complex after detergent mediated solubilisation. In this paper, we show that a very reduced growth rate of the mutant cells largely reduces the extent of these defects, allowing a significant formation of trimeric LHC II and a stabilisation of the PS I complex, in the absence of synthesis of trans3-hexadecenoic acid or of increased level of PG. These results seem to be at variance with the generally accepted role of trans3-hexadecenoic fatty acid (16:1(3t)) in the formation of the PS II light-harvesting antenna. On the other hand, they appear to be consistent with the observation that trimeric LHC II can be formed in the presence of 16:1(3t)-lacking PG in a mutant of Arabidopsis thaliana and in chloroplasts from cotyledons of some Orchideae. We conclude that 16:1(3t)-PG is indeed required for the stabilisation of the trimeric LHC II and of the PS I complex under conditions of high biosynthesis rate, and that it is not essential when these components of the photosynthetic membrane are synthesised at low rates.  相似文献   

8.
New glycosidic aroma precursors (1 and 2) of the main volatile constituents, trans- and cis-linalool 3,6-oxides (linalool oxides I and II), were isolated from oolong tea leaves (Camellia sinensis var. sinensis cv. Maoxie). The isolation was guided by an enzymatic hydrolysis with acetone powder prepared from fresh tea leaves (cv. Yabukita) followed by GC or GC-MS analyses. Chromatographic purification of hot water extracts of the tea leaves on active charcoal, Amberlite XAD-2, and Sephadex LH-20 columns as well as HPLC gave two new glycosides, trans- and cis-linalool 3,6-oxide 6-O-β-d-xylopyranosyl-β-d-glucopyra-nosides (1 and 2).  相似文献   

9.
The enzymatic conversion of cis- or trans-3-chloroacrylic acid to malonate semialdehyde is a key step in the bacterial degradation of the nematocide 1,3-dichloropropene. Two mechanisms have been proposed for the isomer-specific hydrolytic dehalogenases, cis- and trans-3-chloroacrylic acid dehalogenase (cis-CaaD and CaaD, respectively), responsible for this step. In one mechanism, the enol isomer of malonate semialdehyde is produced by the alpha,beta-elimination of HCl from an initial halohydrin species. Phenylenolpyruvate has now been found to be a substrate for CaaD with a kcat/Km value that approaches the one determined for the CaaD reaction using trans-3-chloroacrylate. Moreover, the reaction is stereoselective, generating the 3S isomer of [3-2H]phenylpyruvate in a 1.8:1 ratio in 2H2O. These two observations and a kinetic analysis of active site mutants of CaaD suggest that the active site of CaaD is responsible for the phenylpyruvate tautomerase (PPT) activity. The activity is a striking example of catalytic promiscuity and could reflect the presence of an enol intermediate in CaaD-mediated dehalogenation of trans-3-chloroacrylate. CaaD and cis-CaaD represent different families in the tautomerase superfamily, a group of structurally homologous proteins characterized by a core beta-alpha-beta building block and a catalytic Pro-1. The eukaryotic immunoregulatory protein known as macrophage migration inhibitory factor (MIF), also a tautomerase superfamily member, exhibits a PPT activity, but the biological relevance is unknown. In addition to the mechanistic implications, these results establish a functional link between CaaD and the superfamily tautomerases, highlight the catalytic and binding promiscuity of the beta-alpha-beta scaffold, and suggest that the PPT activity of MIF could reflect a partial reaction in an unknown MIF-catalyzed reaction.  相似文献   

10.
Oxidative stress plays a critical role in the pathogenesis of diabetic vascular complications. Trans-δ-viniferin (TVN), a polyphenolic compound, has recently attracted much attention as an antioxidant exhibiting a hypoglycemic potential. In the present study, we aimed at investigating the protective effect of TVN against high glucose-induced oxidative stress in human umbilical vein endothelial cells (HUVECs) and the potential mechanism involved. We found that TVN attenuated reactive oxygen species (ROS) production, increased catalase (CAT) activity and decreased malondialdehyde (MDA) levels to ameliorate cell survival induced by 35 mM glucose. Meanwhile, it inhibited high glucose-induced apoptosis by maintaining Ca2+ and preserving mitochondrial membrane potential (MMP) levels. The immunoblot analysis indicated that TVN efficiently regulated the cleavage of caspase family, p53, Bax and Bcl-2, all mediated by SIRT1. Furthermore, the increased level of SIRT1 induced by TVN was inhibited by nicotinamide and siRNA-medicated SIRT1 silencing (si-SIRT1), thereby confirming the significant role of SIRT1 in these events. In conclusion, our results indicated that TVN efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in high glucose-treated HUVECs. It suggested that TVN is pharmacologically promising for treating diabetic cardiovascular complications.  相似文献   

11.
12.
Twenty one esters of trans β-(2,4-dichlorophenoxy)acrylic acid were prepared and their inhibitory activity against shoot elongation in the rice plant and barnyard-grass was measured. The relationship between herbicidal activity and chemical structure was analysed using the Hansch approach. The selectivity (activity against barnyard-grass/activity against the rice plant) was mainly due to the lipophilic property of the esters between the two plant species.  相似文献   

13.
Sun H  Zhang D 《Chirality》2011,23(3):260-264
Density functional theory calculations have been carried out to elucidate the stereoselectivity of the Michael addition of cyclohexanone with trans-β-nitrostyrene, induced by a chiral ionic liquid (CIL) pyrrolidine-imidazolium bromide. By comparison of the C-C bond forming processes in the absence and presence of Br(-) anion, we found that intermolecular H-bonds between the imidazolium cation and the nitro group of trans-β-nitrostyrene and the steric hindrance of the imidazolium cation moiety on the Si-face of enamine dominate the stereoselectivity of the Michael addition. The presence of Br(-) anion obviously reduces the barrier by increasing the polarity of the C4=C5 bond of enamine. The theoretical results rationalize well the early experimental finding, and reveal a valuable clue for the further CIL design with high catalytic efficiency.  相似文献   

14.
The current study was conducted to determine the effect of different α-tocopherol (vitamin E) inclusion levels on trans(t)-18:1 and conjugated linoleic acid (CLA) profiles in subcutaneous and intramuscular fat of steers fed a barley-based diet. Fifty-six feedlot steers were offered a barley-based finisher diet (73% steam rolled barley, 22% barley silage and 5% supplement as-fed basis) with four levels of supplementary dl-α-tocopheryl acetate (340, 690, 1040 or 1740 IU/steer per day) for 120 days. Adding vitamin E to the diet had little effect on the overall fatty acid composition of intramuscular fat. The proportion of individual and total t,t- and cis(c),t-CLA, n-3 fatty acids, total polyunsaturated fatty acids (PUFA), mono-unsaturated fatty acids and saturated fatty acids to PUFA ratio in subcutaneous fat were not influenced (P > 0.05) by dietary vitamin E supplementation. Increasing levels of vitamin E led to linear reductions in t6-/t7-/t8-18:1 and t10-18:1 (P < 0.05), and linear increase in t11-/t10-18:1 ratio (P < 0.05) in subcutaneous fat. The content of 20:3n-6 and total n-6 in subcutaneous fat decreased (P < 0.05) linearly with increasing amounts of vitamin E. The subcutaneous fat n-6:n-3 ratio showed a quadratic (P < 0.05) response to vitamin E. In conclusion, although vitamin E supplementation has some potential to reduce t10-18:1 formation and increase t11-/t10-18:1 ratio in subcutaneous fat of cattle fed barley-based diets, the changes in the present study were limited and may not have been sufficient to impact on human health.  相似文献   

15.
Wall polysaccharide chemistry varies phylogenetically, suggesting a need for variation in wall enzymes. Although plants possess the genes for numerous putative enzymes acting on wall carbohydrates, the activities of the encoded proteins often remain conjectural. To explore phylogenetic differences in demonstrable enzyme activities, we extracted proteins from 57 rapidly growing plant organs with three extractants, and assayed their ability to act on six oligosaccharides ‘modelling’ selected cell‐wall polysaccharides. Based on reaction products, we successfully distinguished exo‐ and endo‐hydrolases and found high taxonomic variation in all hydrolases screened: β‐d ‐xylosidase, endo‐(1→4)‐β‐d ‐xylanase, β‐d ‐mannosidase, endo‐(1→4)‐β‐d ‐mannanase, α‐d ‐xylosidase, β‐d ‐galactosidase, α‐l ‐arabinosidase and α‐l ‐fucosidase. The results, as GHATAbase, a searchable compendium in Excel format, also provide a compilation for selecting rich sources of enzymes acting on wall carbohydrates. Four of the hydrolases were accompanied, sometimes exceeded, by transglycosylase activities, generating products larger than the substrate. For example, during β‐xylosidase assays on (1→4)‐β‐d ‐xylohexaose (Xyl6), Marchantia, Selaginella and Equisetum extracts gave negligible free xylose but approximately equimolar Xyl5 and Xyl7, indicating trans‐β‐xylosidase activity, also found in onion, cereals, legumes and rape. The yield of Xyl9 often exceeded that of Xyl7–8, indicating that β‐xylanase was accompanied by an endotransglycosylase activity, here called trans‐β‐xylanase, catalysing the reaction 2Xyl6→ Xyl3 + Xyl9. Similar evidence also revealed trans‐α‐xylosidase, trans‐α‐arabinosidase and trans‐α‐arabinanase activities acting on xyloglucan oligosaccharides and (1→5)‐α‐l ‐arabino‐oligosaccharides. In conclusion, diverse plants differ dramatically in extractable enzymes acting on wall carbohydrate, reflecting differences in wall polysaccharide composition. Besides glycosidase and glycanase activities, five new transglycosylase activities were detected. We propose that such activities function in the assembly and re‐structuring of the wall matrix.  相似文献   

16.
Trans-beta-nitrostyrene (TBNS) has been reported to be a potent inhibitor of protein phosphatases PTB1 and PP2A and to display a pro-apoptotic effect even in multidrug resistant tumour cells. Here we compared the anti-tumour potential of TBNS with 5-fluorouracil (5-FU) as the standard chemotherapeutic agent for colorectal cancer in LoVo cells. Resistance to 5-FU based therapy might be a consequence of 5-FU's delayed effect requiring long-term effective concentrations in the tumour tissue. Thus, alternatives like platin containing drugs with a more rapid effect have been introduced recently. Compared to 5-FU TBNS displayed a faster cytotoxic and pro-apoptotic effect. A 50% decrease in viability was observed already after 8 h with TBNS while 5-FU displayed no significant effect before 48 h. DNA fragmentation and caspase-3 assays confirmed the more rapid apoptotic effect of TBNS. Since apoptosis affects individual cells these results about a rapidly induced apoptosis were further studied on a single cell level in microscopic assays of caspase-3 and caspase-8 activation. Adducts of trans-beta-nitrostyrene displayed an anti-tumour effect comparable to TBNS which suggests the possibility of creating adducts with optimised tissue targeting. Finally, the calculation of a drug combination index displayed a synergistic effect for the combination of TBNS and 5-FU in Lovo as well as in HT-29 and HCT116 colon cancer cells.  相似文献   

17.
Many biological properties have been attributed to ruthenium complex I (trans-[RuCl2(nic)4]) and ruthenium complex II (trans-[RuCl2 (i-nic) 4]) including nitric oxide synthase inhibition. In this study, we evaluated pharmacological effects of these complexes on anxiety and memory formation. Memory was evaluated with inhibitory avoidance and habituation to an open-field and anxiety was tested with elevated plus-maze. Adult male Wistar rats (250 to 350 g) received intraperitoneal injections of vehicle, ruthenium complex I (45.2, 90.4, or 180.7 μmol/kg), or ruthenium complex II (0.08, 4.5, or 13.6 μmol/kg) 30 min prior open-field training or elevated plus-maze test and 30 min or 0 h after training. No effects were observed in the anxiety parameters and habituation to an open-field. The ruthenium complexes impaired memory retention compared with vehicle group in the inhibitory avoidance, as when administrated 30 min prior as immediately after training. The memory impairment induced by ruthenium complexes may be due to their nitric oxide synthase inhibition capacity.  相似文献   

18.
Odorant-binding proteins (OBPs) are important parts of insect olfactory systems, and sensitive olfaction is vital for phytophagous insects in host foraging. Electrophysiological studies are helpful in understanding olfactory sensing in Sitobion avenae (Hemiptera: Aphididae), but the functions of odorant-binding proteins in this insect are poorly understood. In this study, we used fluorescence competition assays to measure the binding specificities of SaveOBPs. The results showed that both SaveOBP2 and SaveOBP3 were superior to SaveOBP7 in binding green leaf volatiles. It was unexpected that SaveOBP7 bound trans-β-farnesene strongly, which was known as alarm pheromone of this species. Host volatiles were recognized much more easily by SaveOBP2, and the observed binding activity of SaveOBP2 equaled for tested green leaf volatiles. Our results imply that SaveOBP7 might play a more important role in aphid alarm pheromone discrimination.  相似文献   

19.
The structures of three Pt(II) thiourea complexes, trans-[(tu)2Pt(NH3)2]Cl2 (1), trans-[(tu)2Pt(CH3NH2)2]Cl2·3H2O (2) and [Pt(tu)4]Cl2 (3), have been determined by X-ray diffraction and refined to R = 0.049 for 1026 reflections (1), R = 0.057 for 2547 reflections (2) and R = 0.046 for 2792 reflections (3). All the compounds crystallize in the space group P21/c and have cell dimensions: a = 5.437(1), b = 6.450(1), c = 17.980(3) Å, β = 96.05(2)°, Z = 2 (compound 1); a = 9.225(1), b = 15.404(2), c = 12.601(2) Å, β = 105.39(2)°, Z = 4 (compound 2); and a = 9.051(6), b = 10.203(6), c = 18.263(8) Å, β = 91.12(8)°, Z = 4 (compound 3). The unit cell of 1 and 3 contains only a single type of cation, while that of 2 is formed from two independent cations. In 1 and 2 the coordination spheres of the Pt atoms are rather similar, with angles close to 90° and coplanarity of the metal and respective donor atoms. Instead, in 3 the four sulfur atoms, which surround the Pt, display a slight distortion (0.06 Å from the mean plane) towards tetrahedral.  相似文献   

20.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号