首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modeling has contributed a great deal to our understanding of how individual neurons and neuronal networks function. In this review, we focus on models of the small neuronal networks of invertebrates, especially rhythmically active CPG networks. Models have elucidated many aspects of these networks, from identifying key interacting membrane properties to pointing out gaps in our understanding, for example missing neurons. Even the complex CPGs of vertebrates, such as those that underlie respiration, have been reduced to small network models to great effect. Modeling of these networks spans from simplified models, which are amenable to mathematical analyses, to very complicated biophysical models. Some researchers have now adopted a population approach, where they generate and analyze many related models that differ in a few to several judiciously chosen free parameters; often these parameters show variability across animals and thus justify the approach. Models of small neuronal networks will continue to expand and refine our understanding of how neuronal networks in all animals program motor output, process sensory information and learn.  相似文献   

2.
Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types.  相似文献   

3.
In this paper, we systematically investigate both the synfire propagation and firing rate propagation in feedforward neuronal network coupled in an all-to-all fashion. In contrast to most earlier work, where only reliable synaptic connections are considered, we mainly examine the effects of unreliable synapses on both types of neural activity propagation in this work. We first study networks composed of purely excitatory neurons. Our results show that both the successful transmission probability and excitatory synaptic strength largely influence the propagation of these two types of neural activities, and better tuning of these synaptic parameters makes the considered network support stable signal propagation. It is also found that noise has significant but different impacts on these two types of propagation. The additive Gaussian white noise has the tendency to reduce the precision of the synfire activity, whereas noise with appropriate intensity can enhance the performance of firing rate propagation. Further simulations indicate that the propagation dynamics of the considered neuronal network is not simply determined by the average amount of received neurotransmitter for each neuron in a time instant, but also largely influenced by the stochastic effect of neurotransmitter release. Second, we compare our results with those obtained in corresponding feedforward neuronal networks connected with reliable synapses but in a random coupling fashion. We confirm that some differences can be observed in these two different feedforward neuronal network models. Finally, we study the signal propagation in feedforward neuronal networks consisting of both excitatory and inhibitory neurons, and demonstrate that inhibition also plays an important role in signal propagation in the considered networks.  相似文献   

4.
We study the spatiotemporal dynamics of neuronal networks with spike frequency adaptation. In particular, we compare the effects of adaptation being either a linear or nonlinear function of neural activity. We find that altering parameters controlling the strength of synaptic connections in the network can lead to spatially structured activity suggestive of symptoms of hallucinogen persisting perception disorder (HPPD). First, we study how both networks track spatially homogeneous flickering stimuli, and find input is encoded as continuous at lower flicker frequencies when the network??s synapses exhibit more net excitation. Mainly, we study instabilities of stimulus-driven traveling pulse solutions, representative of visual trailing phenomena common to HPPD patients. Visual trails are reported as discrete afterimages in the wake of a moving input. Thus, we analyze several solutions arising in response to moving inputs in both networks: an ON state, stimulus-locked pulses, and traveling breathers. We find traveling breathers can arise in both networks when an input moves beyond a critical speed. These possible neural substrates of visual trails occur at slower speeds when the modulation of synaptic connectivity is increased.  相似文献   

5.
This study is concerned with synaptic reorganization in local neuronal networks. Within networks of 30 neurons, an initial disequilibrium in connectivity has to be compensated by reorganization of synapses. Such plasticity is not a genetically determined process, but depends on results of neuronal interaction. Neurobiological experiments have lead to a model of the behavior of individual neurons during neuroplastic reorganization, formalized as a synaptogenetic rule that governs changes in the amount of synaptic elements on each neuron. — When this synaptogenetic rule is applied to a system of neurons, there is some freedom left to the choice of further conditions. In this study it is examined, which assumptions additional to the synaptogenetic rule are essential in order to obtain morphogenetic stability. By explicating these assumptions, their plausibility can be tested. It is analysed, in which respect these conditions are important, in which part of the model they exert their influence, and what kind of instability and degeneration happens if the assumptions are violated. —Our essentials for reaching morphogenetic stability are: (1) A network structure that guarantees the possibility of oscillations, (2) a compensation algorithm that guarantees a smooth morphogenesis, (3) kinetic parameters that guarantee convergence in the synaptic elements' change, and (4) a synaptic modification rule that prohibits Hebb-like as well as anti-Hebb-like synaptic changes. — It is concluded that many structural features of the mammalian cerebral cortex are in accordance with the requirements of the model.  相似文献   

6.
Between the extreme views concerning ontogenesis (genetic vs. environmental determination), we use a moderate approach: a somehow pre-established neuronal model network reacts to activity deviations (reflecting input to be compensated), and stabilizes itself during a complex feed-back process. Morphogenesis is based on an algorithm formalizing the compensation theory of synaptogenesis (Wolff and Wagner 1983). This algorithm is applied to randomly connected McCulloch-Pitts networks that are able to maintain oscillations of their activity patterns over time. The algorithm can lead to networks which are morphogenetically stable but preserve self-maintained oscillations in activity. This is in contrast to most of the current models of synaptogenesis and synaptic modification based on Hebbian rules of plasticity. Hebbian networks are morphogenetically unstable without additional assumptions. The effects of compensation on structural and functional properties of the networks are described. It is concluded that the compensation theory of synaptogenesis can account for the development of morphogenetically stable neuronal networks out of randomly connected networks via selective stabilization and elimination of synapses.The logic of the compensation algorithm is based on experimental results. The present paper shows that the compensation theory can not only predict the behavior of synaptic populations (Wagner and Wolff, in preparation), but it can also describe the behavior of neurons interconnected in a network, with the resulting additional system properties. The neuronal interactions-leading to equilibrium in certain cases-are a self-organizing process in the sense that all decisions are performed on the individual cell level without knowing the overall network situation or goal.  相似文献   

7.
Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro.  相似文献   

8.
Neuronal activity has recently been imaged with single-cell resolution in behaving vertebrates. This was accomplished by using fluorescent calcium indicators in conjunction with confocal or two-photon microscopy. These optical techniques, along with other new approaches for imaging synaptic activity, second messengers, and neurotransmitters and their receptors offer great promise for the study of neuronal networks at high resolution in vivo.  相似文献   

9.
We introduce a stimulus-response scheme that supports plastic variation of synapse weights in neural networks, and analyze how memory formation evolves under external stimulation. In so doing, chaotic networks and stochastic networks that have very different dynamics are compared. Experimental results suggest that chaotic activity remarkably outperforms stochastic activity in stimulus-response memorization. This seems to be indicative of effectiveness of the chaos in dynamic learning by stimulus-response scheme oriented to natural learning.  相似文献   

10.
A photolithographically produced array of 60 substrate-integrated microelectrodes was used for extracellular recording. Neuronal electrical activity was recorded from chicken retinal ganglion cells with or without stimulation by diffuse light. The retina was removed from chicken embryos of embryonic day 14–18. Only cells recorded from day 18 retina would react to photostimulation, increasing their activity when stimulated, corresponding to the developmental time course of photoreceptor differentiation.  相似文献   

11.
Neuron transmits spikes to postsynaptic neurons through synapses. Experimental observations indicated that the communication between neurons is unreliable. However most modelling and computational studies considered deterministic synaptic interaction model. In this paper, we investigate the population rate coding in an all-to-all coupled recurrent neuronal network consisting of both excitatory and inhibitory neurons connected with unreliable synapses. We use a stochastic on-off process to model the unreliable synaptic transmission. We find that synapses with suitable successful transmission probability can enhance the encoding performance in the case of weak noise; while in the case of strong noise, the synaptic interactions reduce the encoding performance. We also show that several important synaptic parameters, such as the excitatory synaptic strength, the relative strength of inhibitory and excitatory synapses, as well as the synaptic time constant, have significant effects on the performance of the population rate coding. Further simulations indicate that the encoding dynamics of our considered network cannot be simply determined by the average amount of received neurotransmitter for each neuron in a time instant. Moreover, we compare our results with those obtained in the corresponding random neuronal networks. Our numerical results demonstrate that the network randomness has the similar qualitative effect as the synaptic unreliability but not completely equivalent in quantity.  相似文献   

12.
Multiple unit activity in deep layers of the frontal and motor cortices was recorded by chronically implanted semimicroelectrodes in waking cats with different levels of food motivation. From four to seven neuronal spike trains were selected from the recorded multiunit activity. Interactions between neighbouring neurons in the motor and frontal areas of the neocortex (within the local neuronal networks) and between the neurons of these areas (distributed neuronal networks) were estimated by means of statistical crosscorrelation analysis of spike trains within the range of delays from 0 to 100 ms. Neurons in the local networks were divided in two subgroups: the neurons with higher spike amplitudes with the dominance of divergent connections and neurons with lower spike amplitudes with the dominance of convergent connections. Strong monosynaptic connections (discharges with a delay of less than 2 ms) between the neurons with high- and low-amplitude spikes formed the background of the local networks. Connections between low-amplitude neurons in the frontal cortex and high-amplitude neurons in the motor cortex dominated in the distributed networks. A 24-hour food deprivation predominantly altered the late interneuronal crosscorrelations with time delays within the range of 2-100 ms in both local and distributed networks.  相似文献   

13.
The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity.  相似文献   

14.
15.
Networks are becoming a ubiquitous metaphor for the understanding of complex biological systems, spanning the range between molecular signalling pathways, neural networks in the brain, and interacting species in a food web. In many models, we face an intricate interplay between the topology of the network and the dynamics of the system, which is generally very hard to disentangle. A dynamical feature that has been subject of intense research in various fields are correlations between the noisy activity of nodes in a network. We consider a class of systems, where discrete signals are sent along the links of the network. Such systems are of particular relevance in neuroscience, because they provide models for networks of neurons that use action potentials for communication. We study correlations in dynamic networks with arbitrary topology, assuming linear pulse coupling. With our novel approach, we are able to understand in detail how specific structural motifs affect pairwise correlations. Based on a power series decomposition of the covariance matrix, we describe the conditions under which very indirect interactions will have a pronounced effect on correlations and population dynamics. In random networks, we find that indirect interactions may lead to a broad distribution of activation levels with low average but highly variable correlations. This phenomenon is even more pronounced in networks with distance dependent connectivity. In contrast, networks with highly connected hubs or patchy connections often exhibit strong average correlations. Our results are particularly relevant in view of new experimental techniques that enable the parallel recording of spiking activity from a large number of neurons, an appropriate interpretation of which is hampered by the currently limited understanding of structure-dynamics relations in complex networks.  相似文献   

16.
We expose hidden function-follow-form schemata in the recorded activity of cultured neuronal networks by comparing the activity with simulation results of a new modeling approach. Cultured networks grown from an arbitrary mixture of neuron and glia cells in the absence of external stimulations and chemical cues spontaneously form networks of different sizes (from 50 to several millions of neurons) that exhibit non-arbitrary complex spatio-temporal patterns of activity. The latter is marked by formation of a sequence of synchronized bursting events (SBEs)--short time windows (approximately 200 ms) of rapid neuron firing, separated by longer time intervals (seconds) of sporadic neuron firing. The new dynamical synapse and soma (DSS) model, used here, has been successful in generating sequences of SBEs with the same statistical scaling properties (over six time decades) as those of the small networks. Large networks generate statistically distinct sub-groups of SBEs, each with its own characteristic pattern of neuronal firing ('fingerprint'). This special function (activity) motif has been proposed to emanate from a structural (form) motif--self-organization of the large networks into a fabric of overlapping sub-networks of about 1 mm in size. Here we test this function-follow-form idea by investigating the influence of the connectivity architecture of a model network (form) on the structure of its spontaneous activity (function). We show that a repertoire of possible activity states similar to the observed ones can be generated by networks with proper underlying architecture. For example, networks composed of two overlapping sub-networks exhibit distinct types of SBEs, each with its own characteristic pattern of neuron activity that starts at a specific sub-network. We further show that it is possible to regulate the temporal appearance of the different sub-groups of SBEs by an additional non-synaptic current fed into the soma of the modeled neurons. The ability to regulate the relative temporal ordering of different SBEs might endow the networks with higher plasticity and complexity. These findings call for additional mechanisms yet to be discovered. Recent experimental observations indicate that glia cells coupled to neuronal soma might generate such non-synaptic regulating currents.  相似文献   

17.
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.  相似文献   

18.
The possibility of generating long-term self-terminating activity lasting some hundreds of milliseconds in neuronal networks with positive (excitatory) feedback was investigated using a computerized mathematical simulation model. This auto-termination is compounded of several factors: stochasticity of the neuronal network, mediating fluctuations in activity level; neuronal interaction, leading either to synchronized discharges and hence of postactivational inhibitory processes, or else to a reorganization of the microstructure underlying neuronal network activity mainly conducive to excitation of neurons with tenuous connections. The likely contribution of these mechanisms to establishing long-term self-terminating activity in the cerebral neuronal networks responsible for different types of programmed rhythmic activity (or generators) is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 382–391, May–June, 1986.  相似文献   

19.
A A Frolov 《Biofizika》1989,34(5):868-876
Information properties of bilayer neuron nets which fulfil the function of hetero- or autoassociative memory were investigated. It was shown that with optimal choice of the net parameters its efficiency coefficient is close to the earlier calculated one for a single associative-neuron-like element, and the quality coefficient is near 1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号