首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rfb gene cluster which determines the biosynthesis of the Shigella flexneri serotype 6 O-antigen specificity has been cloned in pHC79, generating plasmids pPM3115 and pPM3116. These plasmids mediate expression, in Escherichia coli K-12, of lipopolysaccharides (LPS) immunologically similar to the S. flexneri type 6 LPS as judged by SDS-PAGE and Western-immunoblot analysis using S. flexneri type 6 specific antisera. Thus, unlike other S. flexneri serotypes, no additional loci are required for serotype specificity. This expression is independent of E. coli K-12 rfb genes. Southern-hybridization analysis using the 16.2-kb BglII probe from S. flexneri type 6 rfb region detected very little sequence homology in S. flexneri serotypes 1-5, however, some homology was detected with E. coli O2 and O18, but not in E. coli 0101 strains, Salmonella and Vibrio cholerae.  相似文献   

2.
Z Yao  H Liu    M A Valvano 《Journal of bacteriology》1992,174(23):7500-7508
Most of the Shigella flexneri O-specific serotypes result from O-acetyl and/or glucosyl groups added to a common O-repeating unit of the lipopolysaccharide (LPS) molecule. The genes involved in acetylation and/or glucosylation of S. flexneri LPS are physically located on lysogenic bacteriophages, whereas the rfb cluster contains the biosynthesis genes for the common O-repeating unit (D.A.R. Simmons and E. Romanowska, J. Med. Microbiol. 23:289-302, 1987). Using a cosmid cloning strategy, we have cloned the rfb regions from S. flexneri 3a and 2a. Escherichia coli K-12 containing plasmids pYS1-5 (derived from S. flexneri 3a) and pEY5 (derived from S. flexneri 2a) expressed O-specific LPS which reacted immunologically with S. flexneri polyvalent O antiserum. However, O-specific LPS expressed in E. coli K-12 also reacted with group 6 antiserum, indicating the presence of O-acetyl groups attached to one of the rhamnose components of the O-repeating unit. This was confirmed by measuring the amounts of acetate released from purified LPS samples and also by the chemical removal of O-acetyl groups, which abolished group 6 reactivity. The O-acetylation phenotype was absent in an E. coli strain with an sbcB-his-rfb chromosomal deletion and could be restored upon conjugation of F' 129, which carries sequences corresponding to a portion of the deleted region. Our data demonstrate that E. coli K-12 strains possess a novel locus which directs the O acetylation of LPS and is located in the sbcB-rfb region of the chromosomal map.  相似文献   

3.
The O antigen of Escherichia coli O111 is identical in structure to that of Salmonella enterica serovar adelaide. Another O-antigen structure, similar to that of E. coli O111 and S. enterica serovar adelaide is found in both E. coli O55 and S. enterica serovar greenside. Both O-antigen structures contain colitose, a 3,6 dideoxyhexose found only rarely in the Enterobacteriaceae. The O-antigen structure is determined by genes generally located in the rfb gene cluster. We cloned the rfb gene cluster from an E. coli O111 strain (M92), and the clone expressed O antigen in both E. coli K-12 and a K-12 strain deleted for rfb. Lipopolysaccharide analysis showed that the O antigen produced by strains containing the cloned DNA is polymerized. The chain length of O antigen was affected by a region outside of rfb but linked to it and present on some of the plasmids containing rfb. The rfb region of M92 was analysed and compared, by DNA hybridization, with that of strains with related O antigens. The possible evolution of the rfb genes in these O antigen groups is discussed.  相似文献   

4.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

5.
Introduction of the rol genes of Shigella dysenteriae 1 and Escherichia coli K-12 into Shigella flexneri carrier strains expressing the heterologous S. dysenteriae type 1 lipopolysaccharide resulted in the formation of longer chains of S. dysenteriae 1 O antigen. In bacteria producing both homologous and heterologous O antigen, this resulted in a reduction of the masking of heterologous O antigen by homologous lipopolysaccharide and an increased immune response induced by intraperitoneal immunization of mice by recombinant bacteria. The rol genes of S. dysenteriae 1 and E. coli K-12 were sequenced, and their gene products were compared with the S. flexneri Rol protein. The primary sequence of S. flexneri Rol differs from both E. coli K-12 and S. dysenteriae 1 Rol proteins only at positions 267 and 270, which suggests that this region may be responsible for the difference in biological activities.  相似文献   

6.
Escherichia coli K-12 varkappa971 was crossed with a smooth Salmonella typhimurium donor, HfrK6, which transfers early the ilv-linked rfa region determining lipopolysaccharide (LPS) core structure. Two ilv(+) hybrids differing in their response to the LPS-specific phages FO and C21 were then crossed with S. typhimurium HfrK9, which transfers early the rfb gene cluster determining O repeat unit structure. Most recombinants selected for his(+) (near rfb) were agglutinated by Salmonella factor 4 antiserum. Transfer of an F' factor (FS400) carrying the rfb-his region of S. typhimurium to the same two ilv(+) hybrids gave similar results. LPS extracted from two ilv(+),his(+), factor 4-positive hybrids contained abequose, the immunodominant sugar for factor 4 specificity. By contrast, his(+) hybrids obtained from varkappa971 itself by similar HfrK9 and F'FS400 crosses were not agglutinated by factor 4 antiserum, indicating that the parental E. coli varkappa971 does not have the capacity to attach Salmonella O repeat units to its LPS core. It is concluded that the Salmonella rfb genes are expressed only in E. coli varkappa971 hybrids which have also acquired ilv-linked genes (presumably rfa genes affecting core structure or O-translocase ability, or both) from a S. typhimurium donor. When E. coli varkappa971 was crossed with a smooth E. coli donor, Hfr59, of serotype O8, which transfers his early, most his(+) recombinants were agglutinated by E. coli O8 antiserum and lysed by the O8-specific phage, Omega8. This suggests that, although the parental E. coli K-12 strain varkappa971 cannot attach Salmonella-specific repeat units to its LPS core, it does have the capacity to attach E. coli O8-specific repeat units.  相似文献   

7.
S H Xiang  M Hobbs    P R Reeves 《Journal of bacteriology》1994,176(14):4357-4365
The Salmonella enterica O antigen is a highly variable surface polysaccharide composed of a repeated oligosaccharide (the O unit). The O unit produced by serogroup D2 has structural features in common with those of groups D1 and E1, and hybridization studies had previously suggested that the D2 rfb gene cluster responsible for O-unit biosynthesis is indeed a hybrid of the two. In this study, the rfb gene cluster was cloned from a group D2 strain of S. enterica sv. Strasbourg. Mapping, hybridization, and DNA sequencing showed that the organization of the D2 rfb genes is similar to that of group D1, with the alpha-mannosyl transferase gene rfbU replaced by rfbO, the E1-specific beta-mannosyl transferase gene. The E1-specific polymerase gene (rfc) has also been acquired. Interestingly, the D1-like and E1-like rfb regions are separated by an additional sequence closely related to an element (Hinc repeat [H-rpt]) associated with the Rhs loci of Escherichia coli. The H-rpt resembles an insertion sequence and possibly mediated the intraspecific recombination events which produced the group D2 rfb gene organization.  相似文献   

8.
The rfb region of Shigella flexneri encodes the proteins required to synthesize the O-antigen component of its cell surface lipopolysaccharides (LPS). We have previously reported that a region adjacent to rfb was involved in regulating the length distribution of the O-antigen polysaccharide chains (D. F. Macpherson et al., Mol. Microbiol. 5:1491-1499, 1991). The gene responsible has been identified in Escherichia coli O75 (called rol [R. A. Batchelor et al., J. Bacteriol. 173:5699-5704, 1991]) and in E. coli O111 and Salmonella enterica serovar typhimurium strain LT2 (called cld [D. A. Bastin et al., Mol. Microbiol. 5:2223-2231, 1991]). Through a combination of subcloning, deletion, and transposon insertion analysis, we have identified a gene adjacent to the S. flexneri rfb region which encodes a protein of 36 kDa responsible for the length distribution of O-antigen chains in LPS as seen on silver-stained sodium dodecyl sulfate-polyacrylamide gels. DNA sequence analysis identified an open reading frame (ORF) corresponding to the rol gene. The corresponding protein was almost identical in sequence to the Rol protein of E. coli O75 and was highly homologous to the functionally identical Cld proteins of E. coli O111 and S. enterica serovar typhimurium LT2. These proteins, together with ORF o349 adjacent to rfe, had almost identical hydropathy plots which predict membrane-spanning segments at the amino- and carboxy-terminal ends and a hydrophilic central region. We isolated a number of TnphoA insertions which inactivated the rol gene, and the fusion end points were determined. The PhoA+ Rol::PhoA fusion proteins had PhoA fused within the large hydrophilic central domain of Rol. These proteins were located in the whole-membrane fraction, and extraction with Triton X-100 indicated a cytoplasmic membrane location. This finding was supported by sucrose density gradient fractionation of the whole-cell membranes and of E. coli maxicells expressing L-[35S]methionine-labelled Rol protein. Hence, we interpret these data to indicate that the Rol protein is anchored into the cytoplasmic membrane via its amino- and carboxy-terminal ends but that the majority of the protein is located in the periplasmic space. To confirm that rol is responsible for the effects on O-antigen chain length observed with the cloned rfb genes in E. coli K-12, it was mutated in S. flexneri by insertion of a kanamycin resistance cartridge. The resulting strains produced LPS with O antigens of nonmodal chain length, thereby confirming the function of the rol gene product. We propose a model for the function of Rol protein in which it acts as a type of molecular chaperone to facilitate the interaction of the O-antigen ligase (RfaL) with the O-antigen polymerase (Rfc) and polymerized, acyl carrier lipid-linked, O-antigen chains. Analysis of the DNA sequence of the region identified a number of ORFs corresponding to the well-known gnd and hisIE genes. The rol gene was located immediately downstream of two ORFs with sequence similarity to the gene encoding UDPglucose dehydrogenase (HasB) of Streptococcus pyogenes. The ORFs arise because of a deletion or frameshift mutation within the gene we have termed udg (for UDPglucose dehydrogenase).  相似文献   

9.
H Ito  N Kido  Y Arakawa  M Ohta  T Sugiyama    N Kato 《Applied microbiology》1991,57(10):2912-2917
A Southern hybridization analysis revealed that the region homologous to Escherichia coli lacZ was present on the chromosomal DNAs of beta-galactosidase-positive Shigella strains, such as Shigella dysenteriae serovar 1 and Shigella sonnei strains, whereas this region was absent from chromosomal DNAs of beta-galactosidase-negative strains of Shigella flexneri and Shigella boydii. We found that the lacY-A region was deficient in S. dysenteriae serovar 1 and believe that this is the reason for the slow fermentation of lactose by this strain. S. sonnei strains possessed the region which hybridized with E. coli lacY-A despite their slow hydrolysis of lactose. The whole lactose-fermenting region was cloned from S. sonnei and compared with the cloned lac operon of E. coli K-12. Both clones directed the synthesis of beta-galactosidase in an E. coli K-12 strain lacking indigenous beta-galactosidase activity (strain JM109-1), and we observed no difference in the expression of beta-galactosidase activity in S. sonnei and E. coli. However, E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei exhibited the slow lactose fermentation phenotype like the parental strain. S. sonnei strains had no detectable lactose permease activities. E. coli JM109-1 harboring the lactose-fermenting genes of S. sonnei had a detectable permease activity, possibly because of the multicopy nature of the cloned genes, but this permease activity was much lower than that of strain JM109-1 harboring the lac operon of E. coli K-12. From these results we concluded that slow lactose fermentation by S. sonnei is due to weak lactose permease activity.  相似文献   

10.
In Salmonella, ilv-linked rfe genes participate in the biosynthesis of the enterobacterial common antigen (CA) as well as of certain types of O antigen (serogroups C1 and L). rff genes, probably in the same cluster with rfe, are required for CA synthesis (P.H. M?kel? et al., in preparation). Several Escherichia coli strains were studied to determine whether they also have rfe-rff genes that are involved in the synthesis of O antigen and CA, or of CA only. In a first approach, E, coli K-12 F-prime factors carrying the genes ilv and argH or argE and presumably rfe-rff genes were introduced into CA-negative Salmonella mutants that are blocked in CA synthesis because of mutated rfe or rff genes. All resulting ilv+ hybrids were CA positive. In recipients with group C1-derived rfb genes, the synthesis of O6,7-specific antigen was also restored. This result shows that E. coli K-12 has rfe and rff genes providing the functions required in the synthesis of CA and Salmonella 6,7-specific polysaccharide. By introduction of defective rfe regions from suitable Salmonella donors into E. coli O8, 09, and O100 strains, the synthesis of CA as well as of the O-specific polysaccharides was blocked. This indicates that in the E. coli strains tested the rfe genes are involved in the synthesis of both O antigen and CA. This suggestion was confirmed by the finding of E. coli rough mutants that had simultaneously become CA negative. In transduction experiments it could be shown that the appearance of the rough and CA- phenotype was due to a defect in the ilv-linked rfe region.  相似文献   

11.
I-CeuI fragments of four Shigella species were analyzed to investigate their taxonomic distance from Escherichia coli and to collect substantiated evidence of their genetic relatedness because their ribosomal RNA sequences and similarity values of their chromosomal DNA/DNA hybridization had proved their taxonomic identity. I-CeuI digestion of genomic DNAs yielded seven fragments in every species, indicating that all the Shigella species contained seven sets of ribosome RNA operons. To determine the fragment identities, seven genes were selected from each I-CeuI fragment of E. coli strain K-12 and used as hybridization probes. Among the four Shigella species, S. boydii and S. sonnei showed hybridization patterns similar to those observed for E. coli strains; each gene probe hybridized to the I-CeuI fragments with sizes similar to that of the corresponding E. coli fragment. In contrast, S. dysenteriae and S. flexneri showed distinct patterns; rcsF and rbsR genes that located on different I-CeuI fragments in E. coli, fragments D and E, were found to co-locate on a fragment. Further analysis using an additional three genes that located on fragment D in K-12 revealed that some chromosome rearrangements involving the fragments corresponding to fragments D and E of K-12 took place in S. dysenteriae and S. flexneri.  相似文献   

12.
The colanic acid gene cluster of Salmonella enterica LT2 was sequenced and compared with that of Escherichia coli K-12. The two clusters are similar with divergence slightly higher than average for genes of the two species. The cluster was divided into four blocks by GC content and seems likely to have transferred from a higher GC content species to the ancestor of E. coli and S. enterica. All 19 genes of K-12 and 13 genes of LT2 appear to have undergone random genetic drift with amelioration of the GC content. However, in the case of S. enterica, we believe that the six genes of the GDP-fucose pathway group were replaced relatively recently by genes closely related to those of the original donor species. Two repetitive elements were observed: a bacterial interspersed mosaic element in the intergenic region between wzx and wcaK in K-12 only and a RSA (repetitive sequence element) sequence between wcaJ and wzx in LT2 only.  相似文献   

13.
The genetic differences between the human pathogen, Shigella flexneri, and the non-pathogenic Escherichia coli were investigated in an attempt to identify pathogenicity islands (PAIs) in the S. flexneri genome. Genomic subtraction identified a large unique region of DNA which was present in S. flexneri serotype 2a but absent from E. coli K-12. This 42-kb DNA segment was localised to the S. flexneri chromosome and was found to contain a number of elements often associated with PAIs including: insertion sequence elements, bacteriophage genes, and a previously identified Shigella virulence gene (criR). These findings indicate that this region may form a new PAI in the S. flexneri genome.  相似文献   

14.
The O7-specific lipopolysaccharide (LPS) in strains of Escherichia coli consists of a repeating unit made of galactose, mannose, rhamnose, 4-acetamido-2,6-dideoxyglucose, and N-acetylglucosamine. We have recently cloned and characterized genetically the O7-specific LPS biosynthesis region (rfbEcO7) of the E. coli O7:K1 strain VW187 (C. L. Marolda, J. Welsh, L. Dafoe, and M. A. Valvano, J. Bacteriol. 172:3590-3599, 1990). In this study, we localized the gnd gene encoding gluconate-6-phosphate dehydrogenase at one end of the rfbEcO7 gene cluster and sequenced that end of the cluster. Three open reading frames (ORF) encoding polypeptides of 275, 464, and 453 amino acids were identified upstream of gndEcO7, all transcribed toward the gnd gene. ORF275 had 45% similarity at the protein level with ORF16.5, which occupies a similar position in the Salmonella enterica LT2 rfb region, and presumably encodes a nucleotide sugar transferase. The polypeptides encoded by ORFs 464 and 453 were expressed under the control of the ptac promoter and visualized in Coomassie blue-stained sodium dodecyl sulfate-polyacrylamide gels and by maxicell analysis. ORF464 expressed GDP-mannose pyrophosphorylase and ORF453 encoded a phosphomannomutase, the enzymes for the biosynthesis pathway of GDP-mannose, one of the nucleotide sugar precursors for the formation of the O7 repeating unit. They were designated rfbMEcO7 and rfbKEcO7, respectively. The RfbMEcO7 polypeptide was homologous to the corresponding protein in S. enterica LT2, XanB of Xanthomonas campestris, and AlgA of Pseudomonas aeruginosa, all GDP-mannose pyrophosphorylases. RfbKEcO7 was very similar to CpsG of S. enterica LT2, an enzyme presumably involved in the biosynthesis of the capsular polysaccharide colanic acid, but quite different from the corresponding RfbK protein of S. enterica LT2.  相似文献   

15.
Virulence in Shigella spp., as well as in strains of enteroinvasive Escherichia coli, is regulated by growth temperature. Previously, virR had been identified as the gene controlling the temperature-regulated expression of Shigella virulence. Since Shigella spp. and E. coli are also known to share greater than 90% DNA sequence homology, we sought to determine if nonpathogenic E. coli K-12 C600 contains a gene homologous to the Shigella flexneri 2a gene virR. Through the use of transduction and molecular cloning of strain C600 chromosomal DNA we have shown that E. coli K-12 does indeed contain a gene functionally homologous to the virR of S. flexneri.  相似文献   

16.
The gene cluster (rfb region) which determines the biosynthesis of the Shigella flexneri O-antigen of the Y serotype specificity was cloned from a S. flexneri serotype 2a strain. Two plasmids, pPM2212 and pPM2213, which conferred O-antigen biosynthesis were generated from separate cosmid clones by deletion with Clal. These plasmids expressed O-antigen in Escherichia coli K12 like that of the parental strain, as assessed by reactions to antisera in colony and Western immunoblots, sensitivity to bacteriophage Sf6, and by silver staining of lipopolysaccharides separated by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. These plasmids also mediated O-antigen expression in an E. coli K12 rfb-delete background, indicating that all the necessary genes have been cloned. A detailed restriction map of the region has been constructed and analysis of various subclones has allowed the limits of the coding region for O-antigen biosynthesis to be defined to a maximum of 11 kb. Expression of these plasmids demonstrates a novel phenotype associated with control of lipopolysaccharide chain length. The gene(s) responsible maps adjacent to, but separate from, those associated with the biosynthesis of the O-antigen unit. Analysis of plasmid-encoded proteins in minicells and maxicells has facilitated the construction of a physical map. Finally, plasmid pPM-2212 was used to probe a collection of S. flexneri serotypes by Southern hybridization. With the exception of serotype 6, which appears to be unrelated, a similar pattern was found in all serotypes.  相似文献   

17.
A 32P-labeled fragment of DNA, encoding the major part of the chromosomal ampC beta-lactamase gene of Escherichia coli K-12, was used as a hybridization probe for homologous DNA sequences in colonies of Neisseria gonorrhoeae, Pseudomonas aeruginosa, and different enterobacterial species. The ampC probe detected the presence of homologous DNA sequences in clinical isolates of E. coli, Shigella flexneri, Shigella sonnei, Klebsiella pneumoniae, Salmonella typhimurium, Serratia marcescens, and P. aeruginosa. No hybridization was found with N. gonorrhoeae colonies. In Southern blotting experiments the ampC probe hybridized to chromosomal DNA fragments of the same size in all enterobacterial species tested. However, the degree of hybridization differed with DNA from different species. DNA from the Shigella species strongly hybridized to the ampC probe. Furthermore, antibodies raised against purified E. coli K-12 ampC beta-lactamase precipitated beta-lactamases from the Shigella species, suggesting extensive sequence similarities between the ampC genes of these genera. The production of chromosomal beta-lactamase in S. sonnei increased with increasing growth rate similar to E. coli K-12. This growth rate response was abolished in two beta-lactamase-hyperproducing S. sonnei mutants, which thus seem similar to E. coli K-12 attenuator mutants. We propose that both the structure and regulation of the chromosomal beta-lactamase genes are very similar in E. coli and in S. sonnei.  相似文献   

18.
To investigate the effect of chromosomal mutation on the synthesis of rfe-dependent Escherichia coli O9 lipopolysaccharide (LPS), the cloned E. coli O9 rfb gene was introduced into Salmonella typhimurium strains defective in various genes involved in the synthesis of LPS. When E. coli O9 rfb was introduced into S. typhimurium strains possessing defects in rfb or rfc, they synthesized E. coli O9 LPS on their cell surfaces. The rfe-defective mutant of S. typhimurium synthesized only very small amounts of E. coli O9 LPS after the introduction of E. coli O9 rfb. These results confirmed the widely accepted idea that the biosynthesis of E. coli O9-specific polysaccharide does not require rfc but requires rfe. By using an rfbT mutant of the E. coli O9 rfb gene, the mechanism of transfer of the synthesized E. coli O9-specific polysaccharide from antigen carrier lipid to the R-core of S. typhimurium was investigated. The rfbT mutant of the E. coli O9 rfb gene failed to direct the synthesis of E. coli O9 LPS in the rfc mutant strain of S. typhimurium, in which rfaL and rfbT functions are intact, but directed the synthesis of the precursor. Because the intact E. coli O9 rfb gene directed the synthesis of E. coli O9 LPS in the same strain, it was suggested that the rfaL product of S. typhimurium and rfbT product of E. coli O9 cooperate to synthesize E. coli O9 LPS in S. typhimurium.  相似文献   

19.
The rfb gene, involved in the synthesis of the O-specific polysaccharide (a mannose homopolymer) of Escherichia coli O9 lipopolysaccharide (LPS), was cloned in E. coli K-12 strains. The O9-specific polysaccharide covalently linked to the R core of K-12 was extracted from the K-12 strains harboring the O9 rfb gene. All the other genes required for the synthesis of rfe-dependent LPS are therefore considered to be present in the K-12 strains. It was found that bacteria harboring some clones with deletions of the ca. 20-kilobase-pair (kbp) BglII-StuI fragment no longer synthesized the O9-specific polysaccharide. However, bacteria harboring clones del 21, del 22, and del 25, which carry deletions of the 10-kbp PstI-StuI fragment, synthesized an O-specific polysaccharide antigenically distinct from E. coli O9 LPS. Although this new O-specific polysaccharide consisted solely of mannose and the mannose residues were combined only through alpha-1,2 linkage, it was still composed of a repeating oligosaccharide unit, possibly a trisaccharide unit,----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----. It is therefore likely that this new O-specific polysaccharide was derived from a part of the O9-specific polysaccharide----3)alpha Man-(1----3)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----2)alpha Man-(1----and that the deleted part of the clones was responsible for the synthesis of alpha-1,3 linkages of the O9-specific polysaccharide.  相似文献   

20.
Behavior of Coliphage Lambda in Shigella flexneri 2a   总被引:3,自引:1,他引:2       下载免费PDF全文
The insensitivity of wild-type Shigella flexneri 2a to coliphage lambda is a consequence of its native genetic defect in the malA gene cluster. The "smooth" S. flexneri 2a lipopolysaccharide layer affects the efficient adsorption of lambda. Derivatives, capable of serving as functional hosts for lambda, were obtained by repairing the malA lesion, enabling the expression of the malB-lambdarcp region of S. flexneri. Introduction of a mutation into S. flexneri causing a "rough" lipopolysaccharide character resulted in more efficient adsorption of lambda. Such S. flexneri hosts can be stably lysogenized and upon induction yield gal(+)-transducing lysates. Lambda propagated on a malA(+) rough S. flexneri host was restricted by Escherichia coli K-12 and E. coli B, but not by E. coli C. This S. flexneri host did not restrict lambda grown on these E. coli strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号