首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex study of the effect of soil drought (72 h) and subsequent rehydration for 24 and 48 h on the activities of antioxidant and osmoprotective systems in the leaves of young plants of winter wheat (Triticum aestivum L.) cvs. Ballada (high productivity) and Beltskaya (low productivity) was carried out. Under drought conditions, the content of water in the leaves of cv. Ballada reduced to a lesser degree than in the leaves of cv. Beltskaya. Drought did not affect the rate of leaf growth in cv. Ballada but retarded leaf growth in cv. Beltskaya. Under drought conditions, the content of ascorbate reduced in cv. Beltskaya but was not changed in cv. Ballada; the content of glutathione increased by 19% in cv. Ballada and by 30% in cv. Beltskaya. Under drought conditions, ascorbate peroxidase activity was not changed in cv. Ballada whereas in cv. Beltskaya there was a tendency to its decrease. Glutathione reductase activity in the leaves of cv. Beltskaya increased stronger than in cv. Ballada. Substantial differences between cultivars in the accumulation of reducing sugars and sucrose under water deficit were observed. In both cultivars, drought induced an active proline accumulation. Observed differences in the cultivar responses to water stress evidently indicate differences in the strategy of their adaptation to drought. Drought did not affect the contents of chlorophyll and MDA in both cultivars. The data obtained allow a suggestion that, under conditions of moderate soil drought, the coordinated system of antioxidant defense and osmotic control functioned sufficiently effective; as a result, oxidative stress was not developed in both cultivars. Young plants of both cultivars differing in their responses to water deficit retained the ability to recover after rehydration.  相似文献   

2.
Effects of the antioxidant system and chlorophyll fluorescence on drought tolerance of four common bean (Phaseolus vulgaris L.) cultivars were studied. The cultivars were positioned in the order of a decrease in their drought tolerance: Yakutiye, Pinto Villa, Ozayse, and Zulbiye on the basis of changes in the water potential, stomatal conductance, photosynthetic pigment content, and lipid peroxidation. Under drought conditions, the level of H2O2 was not changed in cv. Pinto Villa but decreased in other cultivars. Antioxidant enzymes (superothide dismutase (SOD), guaiacol peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)) were generally activated in all cultivars. Interestingly, CAT, APX, and GR activities were not changed in cv. Pinto Villa, APX activity decreased in cv. Yakutiye, and CAT activity was not changed in cv. Zulbiye. The increases in SOD and GPX activities in cv. Ozayse were higher than in other cultivars. Drought stress reduced the effective quantum yield of PS2 (ΦPS2) and the photochemical quenching (qp), while it increased nonphotochemical quenching (NPQ) in all cultivars. The reduction or increase was more pronounced in cv. Zulbiye. There were generally significant correlations between qp, NPQ, and ROS scavenging by SOD and APX. Also, there were significant correlations between SOD and qp in tolerant cultivars and APX and qp in sensitive ones. The results indicate that activation of SOD and APX was closely related to the efficiency of PS2 in common bean cultivars. This interaction was essential for protection of photosystems and plant survival under drought.  相似文献   

3.
The biochemical and molecular responses of five commercially well-known pomegranate cultivars to severe water stress were studied. The cultivars were subjected to 14-day water stress by withholding irrigation, followed by re-watering for 7 days. Results showed clear differences in metabolites contents and activities of antioxidant enzymes among various pomegranate cultivars during severe water stress and recovery. According to our results, increased accumulation of proline in pomegranate was not related to osmotic adjustment during severe water stress. Except for ‘Ghojagh’, leaves grown under severe water stress conditions showed symptoms of oxidative stress such as reduced chlorophyll concentration. The improved performance of ‘Ghojagh’ under drought stress may be associated with an efficient osmotic adjustment. The up- or down regulated expression of cytosolic glutathione reductase (cytosolic GR) and glutathione peroxidase were observed under drought conditions. Moreover, the suppressed expression of cytosolic GR was also noted. Comparatively, ‘Rabab’ exhibited higher antioxidant capacity and an efficient ROS-scavenging mechanism under drought stress. Lower levels of membrane lipid peroxidation in ‘Ghojagh’ and ‘Rabab’ under drought stress and the marked reduction of malondialdehyde concentration after re-watering represents that these cultivars have a good tolerance to drought stress. As a first step towards the study of the biochemical and molecular responses of pomegranate plants to water stress, this research provides new information into the mechanisms of drought tolerance in the plants.  相似文献   

4.
Comparison of resistance to drought of three bean cultivars   总被引:4,自引:0,他引:4  
The aim of the present work was to evaluate oxidative stress and plant antioxidant system of three contrasting bean (Phaseolus vulgaris L.) genotypes in the response to drought. Drought was imposed 14 d after emergence, by withholding water, until leaf relative water content reached 65 %. Water stress increased lipid peroxidation (LPO), membrane injury index, H2O2 and OH production in leaves of stressed plants. Activities of the antioxidative enzymes superoxide dismutase (SOD) and ascorbate peroxidase (APOX) increased significantly under water stress in all the studied cultivars, while catalase (CAT) increased in cvs. Plovdiv 10 and Prelom, but decreased in cv. Dobrudjanski ran. Furthermore cv. Plovdiv 10 which had the highest APOX and CAT activities also showed the lowest increase in H2O2 and OH production and LPO while cv. Dobrudjanski ran showed the lowest increases (and often the lowest values) in the antioxidant enzyme activities and the highest increases of H2O2 and OH production, and LPO. On the basis of the data obtained we could specify cv. Plovdiv 10 and cv. Prelom as drought tolerant and cv. Dobrudjanski ran as a drought sensitive.  相似文献   

5.
Salt stress-induced changes in antioxidant enzymes, lipid peroxidation, proline and glycine betaine contents, and proline-metabolizing enzymes were examined in the leaves of two mulberry cultivars (Local and Sujanpuri). With increasing salinity up to 150 mM NaCl, superoxide dismutase, catalase, ascor-bate peroxidase, guaiacol peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were increased in both cultivars as compared to control, but more pronounced increase was observed in cv. Local. Salt stress enhanced the rate of lipid peroxidation (as indicated by increasing MDA content) in both cultivars. Under NaCl stress, cv. Local showed less change in the MDA content than cv. Sujanpuri. Salt stress resulted in a significant accumulation of free proline in mulberry leaves, and more accumulation was detected in cv. Local than cv. Sujanpuri. The leaves of cv. Local showed 9-fold accumulation of glycine betaine in comparision with cv. Sujanpuri after 20 days at 150 mM NaCl. A decrease in proline oxidase activity and an increase in γ-glutamyl kinase activity were observed with increasing NaClconcentration. The relative water content and electrolyte leakage also decreased after increasing the NaCl concentration, but a decrease was more pronounced in cv. Sujanpuri than in cv. Local. The results indicate that oxidative stress may play an important role in salt-stressed mulberry plants and cv. Local have more efficient antioxidant characteristics, which could provide for a better protection against oxidative stress.  相似文献   

6.
We analyzed antioxidative defenses, photosynthesis, and pigments (especially xanthophyll-cycle components) in two wheat (Triticum durum Desf.) cultivars, Adamello and Ofanto, during dehydration and rehydration to determine the difference in their sensitivities to drought and to elucidate the role of different protective mechanisms against oxidative stress. Drought caused a more pronounced inhibition in growth and photosynthetic rates in the more sensitive cv Adamello compared with the relatively tolerant cv Ofanto. During dehydration the glutathione content decreased in both wheat cultivars, but only cv Adamello showed a significant increase in glutathione reductase and hydrogen peroxide-glutathione peroxidase activities. The activation states of two sulfhydryl-containing chloroplast enzymes, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase, were maintained at control levels during dehydration and rehydration in both cultivars. This indicates that the defense systems involved are efficient in the protection of sulfhydryl groups against oxidation. Drought did not cause significant effects on lipid peroxidation. Upon dehydration, a decline in chlorophyll a, lutein, neoxanthin, and β-carotene contents, and an increase in the pool of de-epoxidized xanthophyll-cycle components (i.e. zeaxanthin and antheraxanthin), were evident only in cv Adamello. Accordingly, after exposure to drought, cv Adamello showed a larger reduction in the actual photosystem II photochemical efficiency and a higher increase in nonradiative energy dissipation than cv Ofanto. Although differences in zeaxanthin content were not sufficient to explain the difference in drought tolerance between the two cultivars, zeaxanthin formation may be relevant in avoiding irreversible damage to photosystem II in the more sensitive cultivar.  相似文献   

7.
Antioxidant defenses in two wheat cultivars differing in sensitivity to dehydration (YouJian (YJ-24) more sensitive than LongChun (LC-20) were analyzed during water deficit and rewatering. Resistant cultivar (LC-20) showed a higher relative water content than the sensitive cultivar (YJ-24) during the whole period of water withholding. In order to analyze the changes of antioxidant enzymes, native PAGE analysis of protein extract were performed. Wheat leaves had two isoforms of Mn-superoxide dismutase (SOD), two isoforms of Cu/Zn-SOD and one of Fe-SOD. Three catalase (CAT) isoforms were identified in the leaves of wheat. The activities of SOD and CAT isoforms were increased in two cultivars under water deficit. The intensities of SOD and CAT isoforms were slightly lower in LC-20 and increased continuously in YJ-24 after rewatering. Peroxidase (POD) isoforms were significantly increased during the whole dehydration-rehydration period. Three ascorbate peroxidase (APX) isoforms were present in gel. APX-1 and APX-3 were enhanced during water deficit and decreased during rewatering in LC-20. In YJ-24 only the activities of APX-2 were increased under water deficit. Seven isoforms of glutathione reductase (GR) were detected in the native gel. Activities of most of GR isoforms were higher in tolerant (LC-20) than in sensitive cultivar (YJ-24). Different isoforms of GR in two wheat cultivars behaved differently under water deficit and rewatering. These results collectively suggest that water deficit activates the SOD, CAT and ascorbate-glutathione cycle in wheat leaves. The response of enzyme isoforms to drought is not the same for all isoforms of antioxidant enzymes in two wheat cultivars.  相似文献   

8.
9.
以小麦品种‘西农88’(Triticum aestivum L.,cv.Xinong 88)为材料,研究了外源施加不同浓度茉莉酸(1、2.5、5、10 mmol/L)对UV-B辐射(1.5 kJ·m-2·d-1)下小麦幼苗光合色素、抗氧化酶、丙二醛、游离脯氨酸、紫外吸收物、花青素、根系活力等生理指标以及对其生长的影响,探讨了茉莉酸在UV-B辐射胁迫中的可能作用及其作用机制.研究结果表明,外源茉莉酸对小麦幼苗生理指标产生显著影响,并且表现出浓度效应,其中较低浓度的茉莉酸(1 mmol/L和2.5 mmol/L)能明显提高小麦幼苗的UV-B抗性.表现为低浓度茉莉酸显著提高UV-B辐射下小麦幼苗叶片中的总叶绿素含量、过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性.并且外源施加的茉莉酸还能够增加小麦幼苗的游离脯氨酸含量,降低脂质过氧化水平,提高花青素含量,增强根系活力.可见,茉莉酸通过提高小麦幼苗的抗氧化酶活性,增加渗透调节物含量以及保护性色素含量,从而缓解膜脂过氧化程度和提高防御物质含量,进而增强植物抵抗UV-B辐射胁迫的能力,保证小麦幼苗正常生长.  相似文献   

10.
Plants of spring wheat (Triticum aestivum L. cv. Saxana) were grown during the autumn. Over the growth phase of three leaves (37 d after sowing), some of the plants were shaded and the plants were grown at 100 (control without shading), 70, and 40 % photosynthetically active radiation. Over 12 d, chlorophyll (Chl) and total protein (TP) contents, rate of CO2 assimilation (P N), maximal efficiency of photosystem 2 photochemistry (FV/FP), level of lipid peroxidation, and activities of antioxidative enzymes ascorbate peroxidase (APX) and glutathione reductase (GR) were followed in the 1st, 2nd, and 3rd leaves (counted according to their emergence). In un-shaded plants, the Chl and TP contents, P N, and FV/FP decreased during plant ageing. Further, lipid peroxidation increased, while the APX and GR activities related to the fresh mass (FM) decreased. The APX activity related to the TP content increased in the 3rd leaves. The plant shading accelerated senescence including the increase in lipid peroxidation especially in the 1st leaves and intensified the changes in APX and GR activities. We suggest that in the 2nd and 3rd leaves a degradation of APX was slowed down, which could reflect a tendency to maintain the antioxidant protection in chloroplasts of these leaves.  相似文献   

11.
Antioxidant defense in the leaves of C3 and C4 plants under salinity stress   总被引:4,自引:0,他引:4  
The effect of salt stress (50, 100 and 150 m M of NaCl) on the activity of superoxide dismutase (SOD, EC. 1.15.1.1), ascorbate peroxidase (APX, EC. 1.11.1.11), glutathione reductase (GR, EC. 1.6.4.2) enzymes and also on the rate of lipid peroxidation in terms of thiobarbituric acid-reactive substances (TBARS) content and photosynthetic capacity in two wheat (C3 plants) and two maize (C4 plants) varieties was studied. In the non-salined control plants, the antioxidant enzymes activities were significantly higher for maize than for wheat. Adding salt to the nutrient solution increased the level of antioxidants in leaves of both maize and wheat. The first substantial response to salinity was found for SOD on the 2nd day, whereas changes occurred for APX on the 4th day and for GR on the 4th/5th day of salt treatment. Although SOD activity increased considerably more in wheat (C3), it never reached as high levels as in maize (C4) grown in the same treatment combinations. The total increase in APX activity was similar for wheat and maize, whereas GR activity was higher in leaves of maize. Lipid peroxidation analyses showed an increase in TBARS contents in both plants' species grown under salinity that corresponded to the damage that occurred in secondary oxidative stress. However, as a result of advanced antioxidant defense in maize, the TBARS quantities did not elevate to as high level as in wheat. Chlorophyll fluorescence measurements revealed a considerable decrease in the efficiency of PS II and electron-transport chain (ETC). Assimilation rate of CO2 decreased in both plant groups; however, in C4 maize, we observed a much better capacity to preserve the photosynthetic apparatus against overproduction of ROS. Results suggest that efficient antioxidant defense plays an important role in maize, the C4 plant, resistance to environmental stresses like salinity or drought.  相似文献   

12.
The soil-water threshold range of chemical signals and reactive oxygen species (ROS) homeostasis could have a profound impact on drought tolerance in wheat. A pot experiment was used to investigate the homeostasis between ROS and antioxidant defense at five harvest dates, and its role in the correlation between soil-water threshold range of chemical signals and drought tolerance in three wheat (Triticum aestivum) cultivars during progressive soil drying. The cultivars were bred at different periods, cv. BM1 (old), cv. Xiaoyan6 (recent), and cv. Shan229 (modern). They were treated with progressive soil drying. Shoot biomass was affected by drought imposed by two water treatments (90% and 55% field water capacity). The modern wheat cultivar had a lower ROS content and higher ROS-scavenging antioxidant capacity with greater soil drying (68–25% soil water content) compared with the older cultivar. The modern cultivar also had excellent adaptation to drought, with a longer survival of 22.7 days and less reduction in shoot biomass of 20.9% due to early chemical signals and better balance between ROS production and antioxidants. The older cultivar had survival of 15.3 days and 37.3% reduction of shoot biomass. A wider soil-water threshold range of chemical signals was positively correlated with improved drought tolerance and better ROS homeostasis. These results suggest that ROS homeostasis acts as a regulator in relationships between the soil-water threshold range of chemical signals and drought tolerance.  相似文献   

13.
Two durum (Triticum durum L.), Barakatli-95 and Garagylchyg-2; and two bread (Triticum aestivum L.) wheat cultivars, Azamatli-95 and Giymatli-2/17 with different sensitivities to drought were grown in the field on a wide area under normal irrigation and severe water deficit. Drought caused a more pronounced inhibition in photosynthetic parameters in the more sensitive cvs Garagylchyg-2 and Giymatli-2/17 compared with the tolerant cvs Barakatli-95 and Azamatli-95. Upon dehydration, a decline in total chlorophyll and relative water content was evident in all cultivars, especially in later periods of ontogenesis. Potential quantum yield of PS II (F(v)/F(m) ratio) in cv Azamatli-95 was maximal during stalk emergency stage at the beginning of drought. This parameter increased in cv Garagylchyg-2, while in tolerant cultivar Barakatli-95 significant changes were not observed. Contrary to other wheat genotypes in Giymatli-2/17 drought caused a decrease in PS II quantum yield. Drought-tolerant cultivars showed a significant increase in CAT activity as compared to control plants. In durum wheat cultivars maximal activity of CAT was observed at the milk ripeness and in bread wheat cultivars at the end of flowering. APX activity also increased in drought-treated leaves: in tolerant wheat genotypes maximal activity occurred at the end of flowering, in sensitive ones at the end of ear formation. GR activity increased in the tolerant cultivars under drought stress at all stages of ontogenesis. SOD activity significantly decreased in sensitive cultivars and remained at the control level or increased in resistant ones. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

14.
The changes in accumulation of two potential osmoprotectants (proline and glycine betaine), lipid peroxidation appraised as malondialdehyde (MDA) level, activities of key antioxidant enzymes such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), peroxidase (POD: EC 1.11.1.7), and glutathione reductase (GR: EC 1.6.4.2), and soluble protein profile in two cultivars of mulberry (S146 and Sujanpuri) differing in alkalinity (NaHCO3) tolerance were investigated at 2-month intervals up to 6-month growth under stress conditions. Varying levels of salinity–alkalinity developed in soil were 0, 30, 40, and 50 g of NaHCO3 kg?1 soil with pH 7.8, 9.1, 9.8, and 10.3, respectively. Alkali stress led to a consistent accumulation of proline and glycine betaine in mulberry leaves with time. The activities of leaf SOD, CAT, POD, and GR increased with increase in external salt concentration and pH. The increase in antioxidant enzyme activities was higher in cv. S146 than cv. Sujanpuri, whereas rate of lipid peroxidation measured in terms of MDA was higher in cv. Sujanpuri as compared to cv. S146. Protein profile revealed that some unknown proteins of low molecular mass (10–32.5 kDa) were induced by NaHCO3 stress, but differently in two cultivars.  相似文献   

15.
Salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. In this study, the role of SA in improving drought tolerance in two maize cultivars (Zea mays L.) differing in their tolerance to drought was evaluated. The plants were regularly watered per pot and grown until the grain filling stage (R2) under a rainout shelter. At stage R2, parts of the plants were treated with SA, after which drought stress was applied. Leaf samples were harvested on the 10th and 17th days of the drought. Some antioxidant enzyme activity, such as the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), hydrogen peroxide (H2O2) and malondialdehyde (MDA) content, was measured during the drought period. Exogenous SA prevented water loss and delayed leaf rolling in comparison with control leaves in both cultivars. As a consequence of drought stress, lipid peroxidation, measured in terms of malondialdehyde content, was prevented by SA. SA pretreatment induced all antioxidant enzyme activities, and to a greater extent than the control leaves, during drought. SA also caused a reduction in the ascorbate (ASC) and glutathione (GSH) content in two maize cultivars. The H2O2 level was higher in SA pretreated plants than the controls in both cultivars. Pretreatment with SA further enhanced the activities of antioxidant enzymes and the concentrations of non-enzymatic antioxidants in the tolerant cultivar compared with the sensitive cultivar. Results suggested that exogenous SA could help reduce the adverse effects of drought stress and might have a key role in providing tolerance to stress by decreasing water loss and inducing the antioxidant system in plants with leaf rolling, an alternative drought protection mechanism.  相似文献   

16.
We investigated various physiological characteristics of two wheat (Triticum aestivum L.) cultivars differing in drought tolerance, i.e., Shannong16 (a drought-tolerant cultivar) and Weimai8 (a high-yield wheat cultivar under well-watered conditions), under field drought conditions. The experiments were conducted over a two-year period. Drought stress (DS) was imposed by controlling irrigation and sheltering the plants from rain. Compared with Weimai8, Shannong16 exhibited the better water balance, the higher osmotic adjustment, the slower degradation of chlorophyll, and the higher net photosynthetic rate under drought-stress conditions. At the same time, we observed that Shannong16 maintained more integrated chloroplast and thylakoid ultrastructure in flag leaves than Weimai8 under field drought stress. The different levels of antioxidant competence, indicated by MDA content, antioxidant enzyme activities, and the level of superoxide radicals observed in the two wheat cultivars may be involved in the different levels of drought resistance of these cultivars.  相似文献   

17.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars.  相似文献   

18.
Salt stress-induced changes in antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), total chlorophyll content, and lipid peroxidation measured as malondialdehyde (MDA) content, in leaves of a green bean genotype Gevas sirsk 57 (GS57) and cv. Fransiz 4F-89 differing in salt tolerance were investigated. Plants were subjected to three salt treatments (0, 50, and 100 mM NaCl) under controlled climatic conditions for 7 days. The salt-sensitive cv. 4F-89 exhibited a decrease in GR activity at all salt treatments, but the salt-tolerant genotype GS57 showed only a slight decrease in GR under 50 mM salt treatment and an increase under 100 mM salt treatment. CAT and APX activities increased with increasing salt stress in both varieties. CAT and APX activities were higher in the salt-tolerant GS57 than salt-ensitive cv. 4F-89. The two varieties showed an increase in MDA content with an increase in salinity, but the increase in sensitive cv. 4F-89 under salt stress was higher than that in salt-tolerant GS57 genotype. The increasing NaCl concentration caused a reduction in the chlorophyll content in cv. 4F-89 but not in GS57.  相似文献   

19.
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm3 pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.  相似文献   

20.
Aim of the present study was to determine differential responses in growth and physiology of tolerant (cv. IGPN 2004) and sensitive (cv. GA 10) cultivars of Niger (Guizotia abyssinica Cass.) using in vitro grown calli under water deficit conditions. The calli were subjected to drought stress using PEG-8000 (–0.16,–0.45,–0.87,–1.42 bar) for 15 d and relative growth rate (RGR), percent tissue water content (% TWC), osmolytes (proline–Pro, glycine betaine—GB, total soluble sugars—TSS) accumulation, malondialehyde (MDA) content as well as antioxidant enzyme activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) were analysed. Our findings showed that RGR and percent TWC was decreased significantly with the intensity of drought stress in both cultivars, but the RGR reduction was least (five folds) in cv. IGPN 2004 than in cv. GA 10 (6.2 folds). In osmolyte accumulation such as Pro and GB, cv. IGPN 2004 was found superior (5.5 and ten folds higher, respectively) to tolerate drought stress than GA 10; however, no change was observed in TSS accumulation. Further, it was noted that cv. IGPN 2004 caused least oxidative damage to the membranes. It also exhibited better SOD, CAT and APX activities and had higher α-tocopherol content. The least reduction in growth and MDA content and higher osmolytes and antioxidant activities in cv. IGPN 2004 revealed more drought stress tolerance at cellular level. It was suggested that increased drought tolerance of cv. IGPN 2004 was coupled with its better maintenance of RGR, percent TWC, reduced lipid peroxidation, more accumulation of osmolytes and higher antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号