首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair.  相似文献   

2.
3.
Electrospun nanofibrous scaffolds show huge potential to improve the neurological outcome in central nervous system disorders. In this study, we cultured mouse embryonic stem cells (mESCs) on an electrospun nanofibrous polylactic acid/Chitosan/Wax (PLA/CS/Wax) scaffold and surveyed the attachment, behavior, and differentiation of mESCs into neural cells. Differentiation in neural-like cells (NLCs) was investigated with a medium containing SB431542 as a small molecule and conjugated linolenic acid after 20 days. We used Immunocytochemistry and quantitative real-time polymerase chain reaction (RT-PCR) techniques to assess neural marker expression in differentiated cells. SEM imaging demonstrated that mESCs could strongly attach, stretch, and differentiate on PLA/CS/Wax scaffolds. MESCs that were cultured on PLA/CS/Wax scaffolds showed enhanced numbers of neural structures and neural markers including Nestin, NF-H, Tuj-1, and Map2 in neural induction medium compared to the control sample. These results revealed that electrospun PLA/CS/Wax scaffolds associated with the induction medium can assemble proper conditions for stem cell differentiation into NLCs. We hope that the development of new technologies in neural tissue engineering may pave a new avenue for neural tissue regeneration.  相似文献   

4.
The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.  相似文献   

5.
Bone marrow is a useful cell source for skeletal tissue engineering approaches. In vitro differentiation of marrow mesenchymal stem cells (MSCs) to chondrocytes or osteoblasts can be induced by the addition of specific growth factors to the medium. The present study evaluated the behaviour of human MSCs cultured on various scaffolds to determine whether their differentiation can be induced by cell-matrix interactions. MSCs from bone marrow collected from the acetabulum during hip arthroplasty procedures were isolated by cell sorting, expanded and characterised by a flow cytometry system. Cells were grown on three different scaffolds (type I collagen, type I + II collagen and type I collagen + hydroxyapatite membranes) and analysed by histochemistry, immunohistochemistry and spectrophotometry (cell proliferation, alkaline phosphatase activity) at 15 and 30 days. Widely variable cell adhesion and proliferation was observed on the three scaffolds. MSCs grown on type I+II collagen differentiated to cells expressing chondrocyte markers, while those grown on type I collagen + hydroxyapatite differentiated into osteoblast-like cells. The study highlighted that human MSCs grown on different scaffold matrices may display different behaviours in terms of cell proliferation and phenotype expression without growth factor supplementation.  相似文献   

6.
Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.  相似文献   

7.
The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control. At 24 h after cell seeding, the viability of the attached cells on the various substrates could be ranked as follows: PCL film > TCPS > PCL fibrous > PLLA fibrous > PHBV film > CS fibrous approximately CS film approximately PLLA film > PHB film > PHBV fibrous > PHB fibrous. At day 3 of cell culture, the viability of the proliferated cells on the various substrates could be ranked as follows: TCPS > PHBV film > PLLA film > PCL film > PLLA fibrous > PHB film approximately PCL fibrous > CS fibrous > CS film > PHB fibrous > PHBV fibrous. At approximately 8 h after cell seeding, the cells on the flat surfaces of all of the film scaffolds and that of the PCL nanofibrous scaffold appeared in their characteristic spindle shape, while those on the surfaces of the PHB, PHBV, and PLLA macrofibrous scaffolds also appeared in their characteristic spindle shape, but with the cells being able to penetrate to the inner side of the scaffolds.  相似文献   

8.
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications.  相似文献   

9.
In vitro cultures of primary, human trabecular bone-derived cells represent a useful system for investigation of the biology of osteoblasts. Our recent discovery of the multilineage mesenchymal differentiation potential of trabecular bone-derived cells suggests the potential application of these cells as mesenchymal progenitors for tissue repair and regeneration. Such applications are crucially dependent on efficient cellisolation protocols to yield cells that optimally proliferate and differentiate. In this study, we describe a simple, high-yield procedure, requiring minimal culture expansion, for the isolation of mesenchymal progenitor cells from human trabecular bone. Moreover, these cells retain their ability to differentiate along multiple mesenchymal lineages through successive subculturing. Cell populations isolated and cultured as described here allow the efficient acquisition of a clinically significant number of cells, which may be used as the cell source for tissue-engineering applications.  相似文献   

10.
Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency of these cells in the circulation challenges the cell isolation and subsequently limits the clinical application of these cells. In the present study, the peripheral blood mononuclear cells (pbMNCs) were isolated from wound animals and treated with the supernatant of bone marrow mesenchymal stromal cells (bmMSCs). Results showed these pbMNCs were fibroblast-like, had stromal morphology, were negative for CD34 and CD45, but positive for Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and osteoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells (ipbMSCs). Skin grafts in combination with ipbMSCs and collagen I were applied for wound healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of growth factors and chemokines secreted by bmMSCs may play an important roles in the induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our results are clinically relevant because it provide a new method for the acquisition of MSCs which can be used as a candidate for the wound repair.  相似文献   

11.
Embryonic stem cells (ES cells), bone marrow-derived mesenchymal stem cells, umbilical cord blood-derived mesenchymal stem cells, and hepatic stem cells in liver have been known as a useful source that can induce to differentiate into hepatocytes. In this study, we examined whether human adipose tissue-derived stromal cells (hADSC) can differentiate into hepatic lineage in vitro. hADSC, that were induced to differentiate into hepatocyte-like cells by the treatment of HGF and OSM, had morphology similar to hepatocytes. Addition of DMSO enhanced differentiation into hepatocytes. RT-PCR and immunocytochemical analysis showed that hADSC express albumin and alpha-fetoprotein during differentiation. Differentiated hADSC showed LDL uptake and production of urea. Additionally, transplanted hADSC to CCl4-injured SCID mouse model were able to be differentiated into hepatocytes and they expressed albumin in vivo. Mesenchymal stem cells isolated from human adipose tissue are immunocompatible and are easily isolated. Therefore, hADSC may become an alternative source to hepatocyte regeneration or liver cell transplantation.  相似文献   

12.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   

13.
MC Phipps  Y Xu  SL Bellis 《PloS one》2012,7(7):e40831
The recruitment of mesenchymal stem cells (MSCs) is a vital step in the bone healing process, and hence the functionalization of osteogenic biomaterials with chemotactic factors constitutes an important effort in the tissue engineering field. Previously we determined that bone-mimetic electrospun scaffolds composed of polycaprolactone, collagen I and nanohydroxyapatite (PCL/col/HA) supported greater MSC adhesion, proliferation and activation of integrin-related signaling cascades than scaffolds composed of PCL or collagen I alone. In the current study we investigated the capacity of bone-mimetic scaffolds to serve as carriers for delivery of an MSC chemotactic factor. In initial studies, we compared MSC chemotaxis toward a variety of molecules including PDGF-AB, PDGF-BB, BMP2, and a mixture of the chemokines SDF-1α, CXCL16, MIP-1α, MIP-1β, and RANTES. Transwell migration assays indicated that, of these factors, PDGF-BB was the most effective in stimulating MSC migration. We next evaluated the capacity of PCL/col/HA scaffolds, compared with PCL scaffolds, to adsorb and release PDGF-BB. We found that significantly more PDGF- BB was adsorbed to, and subsequently released from, PCL/col/HA scaffolds, with sustained release extending over an 8-week interval. The PDGF-BB released was chemotactically active in transwell migration assays, indicating that bioactivity was not diminished by adsorption to the biomaterial. Complementing these studies, we developed a new type of migration assay in which the PDGF-BB-coated bone-mimetic substrates were placed 1.5 cm away from the cell migration front. These experiments confirmed the ability of PDGF-BB-coated PCL/col/HA scaffolds to induce significant MSC chemotaxis under more stringent conditions than standard types of migration assays. Our collective results substantiate the efficacy of PDGF-BB in stimulating MSC recruitment, and further show that the incorporation of native bone molecules, collagen I and nanoHA, into electrospun scaffolds not only enhances MSC adhesion and proliferation, but also increases the amount of PDGF-BB that can be delivered from scaffolds.  相似文献   

14.
Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric alpha-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.  相似文献   

15.
16.
17.
In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 μm were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human.Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential potential of marmoset MSCs in adipogenic, osteogenic and chondrogenic lineages and the suitability of collagen scaffolds as carrier material undisturbing differentiation of primate mesenchymal stem cells.  相似文献   

18.
hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(ε-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, integrin1β, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove’s Modified Dulbecco’s Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.  相似文献   

19.
Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these results suggest that microporous electrospun scaffolds pre-seeded with fibroblasts promote greater wound-healing than acellular scaffolds.  相似文献   

20.
Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell differentiation in vitro and bone regeneration in vivo. It may be possible to improve healing of bone defects in humans using stem cells from bone marrow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号