首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li W  Liu Z  Lai L 《Biopolymers》1999,49(6):481-495
A general problem in comparative modeling and protein design is the conformational evaluation of loops with a certain sequence in specific environmental protein frameworks. Loops of different sequences and structures on similar scaffolds are common in the Protein Data Bank (PDB). In order to explore both structural and sequential diversity of them, a data base of loops connecting similar secondary structure fragments is constructed by searching the data base of families of structurally similar proteins and PDB. A total of 84 loop families having 2-13 residues are found among the well-determined structures of resolution better than 2.5 A. Eight alpha-alpha, 20 alpha-beta, 19 beta-alpha, and 37 beta-beta families are identified. Every family contains more than 5 loop motifs. In each family, no loops share same sequence and all the frameworks are well superimposed. Forty-three new loop classes are distinguished in the data base. The structural variability of loops in homologous proteins are examined and shown in 44 families. Motif families are characterized with geometric parameters and sequence patterns. The conformations of loops in each family are clustered into subfamilies using average linkage cluster analysis method. Information such as geometric properties, sequence profile, sequential and structural variability in loop, structural alignment parameters, sequence similarities, and clustering results are provided. Correlations between the conformation of loops and loop sequence, motif sequence, and global sequence of PDB chain are examined in order to find how loop structures depend on their sequences and how they are affected by the local and global environment. Strong correlations (R > 0.75) are only found in 24 families. The best R value is 0.98. The data base is available through the Internet.  相似文献   

2.
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways triggered by hormones, odorants, peptides, proteins, and other types of ligands. The superfamily is so diverse that many members lack sequence similarity, although they all span the cell membrane seven times with an extracellular N and a cytosolic C terminus. We analyzed a divergent set of GPCRs and found distinct loop length patterns and differences in amino acid composition between cytosolic loops, extracellular loops, and membrane regions. We configured GPCRHMM, a hidden Markov model, to fit those features and trained it on a large dataset representing the entire superfamily. GPCRHMM was benchmarked to profile HMMs and generic transmembrane detectors on sets of known GPCRs and non-GPCRs. In a cross-validation procedure, profile HMMs produced an error rate nearly twice as high as GPCRHMM. In a sensitivity-selectivity test, GPCRHMM's sensitivity was about 15% higher than that of the best transmembrane predictors, at comparable false positive rates. We used GPCRHMM to search for novel members of the GPCR superfamily in five proteomes. All in all we detected 120 sequences that lacked annotation and are potentially novel GPCRs. Out of those 102 were found in Caenorhabditis elegans, four in human, and seven in mouse. Many predictions (65) belonged to Pfam domains of unknown function. GPCRHMM strongly rejected a family of arthropod-specific odorant receptors believed to be GPCRs. A detailed analysis showed that these sequences are indeed very different from other GPCRs. GPCRHMM is available at http://gpcrhmm.cgb.ki.se.  相似文献   

3.
A major, unresolved question in signal transduction by G protein coupled receptors (GPCRs) is to understand how, at atomic resolution, a GPCR activates a G protein. A step toward answering this question was made with the determination of the high-resolution structure of rhodopsin; we now know the intramolecular interactions that characterize the resting conformation of a GPCR. To what degree does this structure represent a structural paradigm for other GPCRs, especially at the cytoplasmic surface where GPCR-G protein interaction occurs and where the sequence homology is low among GPCRs? To address this question, we performed NMR studies on approximately 35-residue-long peptides including the critical second intracellular loop (i2) of the alpha 2A adrenergic receptor (AR) and of rhodopsin. To stabilize the secondary structure of the peptide termini, 4-12 residues from the adjacent transmembrane helices were included and structures determined in dodecylphosphocholine micelles. We also characterized the effects on an alpha 2A AR peptide of a D130I mutation in the conserved DRY motif. Our results show that in contrast to the L-shaped loop in the i2 of rhodopsin, the i2 of the alpha 2A AR is predominantly helical, supporting the hypothesis that there is structural diversity within GPCR intracellular loops. The D130I mutation subtly modulates the helical structure. The spacing of nonpolar residues in i2 with helical periodicity is a predictor of helical versus loop structure. These data should lead to more accurate models of the intracellular surface of GPCRs and of receptor-mediated G protein activation.  相似文献   

4.
Terminal tetraloops consisting of GNRA sequences are often found in biologically active large RNAs. The loops appear to contribute towards the organization of higher order RNA structures by forming specific tertiary interactions with their receptors. Group IC3 introns which possess a GAAA loop in the L2 region often have a phylogenetically conserved motif in their P8 domains. In this report, we show that this conserved motif stands as a new class of receptor that distinguishes the sequences of GNRA loops less stringently than previously known receptors. The motif can functionally substitute an 11 nt motif receptor in the Tetrahymena ribozyme. Its structural and functional similarity to one class of synthetic receptors obtained from in vitro selection is observed.  相似文献   

5.
Single stranded RNA molecules can assume a wide range of tertiary structures beyond the canonical A-form double helix. Certain sequences, termed motifs, are more common than a random distribution would suggest. The existence of such motifs can be rationalized in structural terms. In this study, we have investigated the intrinsic structural stability of RNA terminal loop motifs using multiple MD simulations in explicit water. Representative loops were chosen from the major tetraloop motifs, including also the U-turn motif. Not all loops retain their folded starting structure, but lowering the temperature to 277 K, or adding adjacent base pairs from the stem to which the motif is attached, helps stabilizing the folded loop structure.  相似文献   

6.
Crasto CJ  Feng J 《Proteins》2001,42(3):399-413
We performed an extensive sequence analysis on the loops of proteins. By dividing a loop databank derived from the Protein Data Bank into groups, we analyzed the chemical characteristics and the sequence preferences of loops of different lengths and loops connecting different secondary structures in proteins. We found that a large population of loops in our loop databank (94.4%) is either partially or completely surface-exposed. A majority of surface loops in proteins are hydrophilic, whereas the chemical characteristics of interior loops are relatively neutral according to Eisenberg's consensus hydrophobicity scale. As a first step in investigating the intrinsic sequence-structure relationship of loop sequences in proteins, we performed a neighbor-dependent sequence analysis that calculated the effect of the neighboring amino acid type on the loop propensity of residues in loops. This method enhances the statistical significance of residue propensity, thus allowing us to explore the positional preference of amino acids in loops. Our analysis yielded a series of amino acid dyads that showed high preference for loop conformation. The data presented in this study should prove useful for developing potential codes in recognizing loop sequences in proteins.  相似文献   

7.
8.
Abstract

Single stranded RNA molecules can assume a wide range of tertiary structures beyond the canonical A-form double helix. Certain sequences, termed motifs, are more common than a random distribution would suggest. The existence of such motifs can be rationalized in structural terms. In this study, we have investigated the intrinsic structural stability of RNA terminal loop motifs using multiple MD simulations in explicit water. Representative loops were chosen from the major tetraloop motifs, including also the U-turn motif. Not all loops retain their folded starting structure, but lowering the temperature to 277 K, or adding adjacent base pairs from the stem to which the motif is attached, helps stabilizing the folded loop structure.  相似文献   

9.
Cyclotides are a family of bioactive plant peptides that are characterized by a circular protein backbone and three conserved tightly packed disulfide bonds. The antimicrobial and hemolytic properties of cyclotides, along with the relative hydrophobicity of the peptides, point to the biological membrane as a target for cyclotides. To assess the membrane-induced conformation and orientation of cyclotides, the interaction of the M?bius cyclotide, kalata B1, from the African perennial plant Oldenlandia affinis, with dodecylphosphocholine micelles was studied using NMR spectroscopy. Under conditions where the cyclotide formed a well-defined complex with micelles, the spatial structure of kalata B1 was calculated from NOE and J couplings data, and the model for the peptide-micelle complex was built using 5- and 16-doxylstearate relaxation probes. The binding of divalent cations to the peptide-micelle complex was quantified by Mn2+ titration. The results show that the peptide binds to the micelle surface, with relatively high affinity, via two hydrophobic loops (loop 5, Trp19-Val21; and loop6, Leu27-Val29). The charged residues (Glu3 and Arg24), along with the cation-binding site (near Glu3) are segregated on the other side of the molecule and in contact with polar head groups of detergent. The spatial structure of kalata B1 is only slightly changed during incorporation into micelles and represents a distorted triple-stranded beta-sheet cross-linked by a cystine knot. Detailed structural analysis and comparison with other knottins revealed structural conservation of the two-disulfide motif in cyclic and acyclic peptides. The results thus obtained provide the first model for interaction of cyclotides with membranes and permit consideration of the cyclotides as membrane-active cationic antimicrobial peptides.  相似文献   

10.
GltS of Escherichia coli is a secondary transporter that catalyzes Na+-glutamate symport. The structural model of GltS shows two homologous domains with inverted membrane topology that are connected by a central loop that resides in the cytoplasm. Each domain contains a reentrant loop structure. Accessibility of the Cys residues in two GltS mutants in which Pro351 and Asn356 in the reentrant loop in the C-terminal domain were replaced by Cys is demonstrated to be sensitive to the catalytic state supporting a role for the reentrant loops in catalysis. Saturating concentrations of the substrate L-glutamate protected both mutants against inactivation by thiol reagents, while the presence of the co-ion Na+ stimulated the inactivation of both mutants. Insertion of the 10 kDa biotin acceptor domain (BAD) of oxaloacetate decarboxylase of Klebsiella pneumoniae in the central cytoplasmic loop blocked the access pathway from the periplasmic side of the membrane to the cysteine residues in mutants P351C and N356C in the reentrant loop. Kinetically, insertion of BAD increased the maximal rate of uptake 2.7-fold while leaving the apparent affinity constants for L-glutamate and Na+ unaltered. The data suggests that insertion of BAD in the central loop results in conformational changes at the translocation site that lower the activation energy of the translocation step without affecting the access pathway from the periplasmic side for substrate and co-ions. It is concluded that changes in the central loop that connects the two domains may have a regulatory function on the activity of the transporter.  相似文献   

11.
Protein synthesis requires accurate charging of tRNA with cognate amino acid as catalyzed by aminoacyl-tRNA synthetases. Crystal structures of tyrosyl-tRNA synthetase (YRSs) show remarkably diverse conformations for the KMSKS loop, hitherto classified as “open” and “closed”. This traditional classification implied that the KMSKS loop adopts different conformations depending on occupancy of active site pocket. Our structural analyses of evolutionarily derived ensemble of differentially ligated YRSs using quantitative structural criterion demonstrate intrinsic conformational heterogeneity in KMSKS loop that is independent of occupancy of active site. Differential centroid distance analyses between KMSKS motif and Rossmann fold domain reveal an intriguing bimodal distribution. These insights have been used for a more consistent re-classification of YRS conformations as either compact or extended. Our data not only reflect inherent dynamics within the conformational landscape of KMSKS loops, but also have implications for structure-based drug design efforts.  相似文献   

12.
The disulfide-bonded loop of chromogranin B (CgB), a regulated secretory protein with widespread distribution in neuroendocrine cells, is known to be essential for the sorting of CgB from the trans-Golgi network (TGN) to immature secretory granules. Here we show that this loop, when fused to the constitutively secreted protein alpha1-antitrypsin (AT), is sufficient to direct the fusion protein to secretory granules. Importantly, the sorting efficiency of the AT reporter protein bearing two loops (E2/3-AT-E2/3) is much higher compared with that of AT with a single disulfide-bonded loop. In contrast to endogenous CgB, E2/3-AT-E2/3 does not undergo Ca2+/pH-dependent aggregation in the TGN. Furthermore, the disulfide-bonded loop of CgB mediates membrane binding in the TGN and does so with 5-fold higher efficiency if two loops are present on the reporter protein. The latter finding supports the concept that under physiological conditions, aggregates of CgB are the sorted units of cargo which have multiple loops on their surface leading to high membrane binding and sorting efficiency of CgB in the TGN.  相似文献   

13.
In this study, we were concerned with the structural role of the surface-exposed extracellular loops of the N-terminal transmembrane (TM) domain of OmpA. A variant of the TM domain of outer membrane protein A (OmpA) with all four such loops shortened, which we call the beta-barrel platform (BBP), was successfully refolded. This indicates that the removed parts of the surface-exposed loops indeed do not contain amino acid sequences critical for this membrane protein's refolding in vitro. BBP has the potential to be used as a template beta-barrel membrane protein structure for the development of novel functions, although our results also highlight the potential difficulties that can arise when functionality is being engineered into the loop regions of membrane proteins. We have used solution nuclear magnetic resonance spectroscopy to determine the global fold of BBP+EF, BBP with a metal ion-binding EF-hand inserted in one of the shortened loops. BBP and BBP+EF in dihexanoylphosphatidylcholine micelles are eight-stranded antiparallel beta-barrels, and BBP represents the smallest beta-structured integral membrane protein known to date.  相似文献   

14.
RecQ enzymes are broadly conserved Superfamily-2 (SF-2) DNA helicases that play critical roles in DNA metabolism. RecQ proteins use the energy of ATP hydrolysis to drive DNA unwinding; however, the mechanisms by which RecQ links ATPase activity to DNA-binding/unwinding are unknown. In many Superfamily-1 (SF-1) DNA helicases, helicase sequence motif III links these activities by binding both single-stranded (ss) DNA and ATP. However, the ssDNA-binding aromatic-rich element in motif III present in these enzymes is missing from SF-2 helicases, raising the question of how these enzymes link ATP hydrolysis to DNA-binding/unwinding. We show that Escherichia coli RecQ contains a conserved aromatic-rich loop in its helicase domain between motifs II and III. Although placement of the RecQ aromatic-rich loop is topologically distinct relative to the SF-1 enzymes, both loops map to similar tertiary structural positions. We examined the functions of the E.coli RecQ aromatic-rich loop using RecQ variants with single amino acid substitutions within the segment. Our results indicate that the aromatic-rich loop in RecQ is critical for coupling ATPase and DNA-binding/unwinding activities. Our studies also suggest that RecQ's aromatic-rich loop might couple ATP hydrolysis to DNA-binding in a mechanistically distinct manner from SF-1 helicases.  相似文献   

15.
Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.  相似文献   

16.
The Golgi anti-apoptotic protein (GAAP) is a hydrophobic Golgi protein that regulates intracellular calcium fluxes and apoptosis. GAAP is highly conserved throughout eukaryotes and some strains of vaccinia virus (VACV) and camelpox virus. Based on sequence, phylogeny, and hydrophobicity, GAAPs were classified within the transmembrane Bax inhibitor-containing motif (TMBIM) family. TMBIM members are anti-apoptotic and were predicted to have seven-transmembrane domains (TMDs). However, topology prediction programs are inconsistent and predicted that GAAP and other TMBIM members have six or seven TMDs. To address this discrepancy, we mapped the transmembrane topology of viral (vGAAP) and human (hGAAP), as well as Bax inhibitor (BI-1). Data presented show a six-, not seven-, transmembrane topology for vGAAP with a putative reentrant loop at the C terminus and both termini located in the cytosol. We find that this topology is also conserved in hGAAP and BI-1. This places the charged C terminus in the cytosol, and mutation of these charged residues in hGAAP ablated its anti-apoptotic function. Given the highly conserved hydrophobicity profile within the TMBIM family and recent phylogenetic data indicating that a GAAP-like protein may have been the ancestral progenitor of a subset of the TMBIM family, we propose that this vGAAP topology may be used as a model for the remainder of the TMBIM family of proteins. The topology described provides valuable information on the structure and function of an important but poorly understood family of proteins.  相似文献   

17.
Phosphotyrosine hydrolysis by protein tyrosine phosphatases (PTPs) involves substrate binding by the PTP loop and closure over the active site by the WPD loop. The E loop, located immediately adjacent to the PTP and WPD loops, is conserved among human PTPs in both sequence and structure, yet the role of this loop in substrate binding and catalysis is comparatively unexplored. Hematopoietic PTP (HePTP) is a member of the kinase interaction motif (KIM) PTP family. Compared to other PTPs, KIM-PTPs have E loops that are unique in both sequence and structure. In order to understand the role of the E loop in the transition between the closed state and the open state of HePTP, we identified a novel crystal form of HePTP that allowed the closed-state-to-open-state transition to be observed within a single crystal form. These structures, which include the first structure of the HePTP open state, show that the WPD loop adopts an ‘atypically open’ conformation and, importantly, that ligands can be exchanged at the active site, which is critical for HePTP inhibitor development. These structures also show that tetrahedral oxyanions bind at a novel secondary site and function to coordinate the PTP, WPD, and E loops. Finally, using both structural and kinetic data, we reveal a novel role for E-loop residue Lys182 in enhancing HePTP catalytic activity through its interaction with Asp236 of the WPD loop, providing the first evidence for the coordinated dynamics of the WPD and E loops in the catalytic cycle, which, as we show, is relevant to multiple PTP families.  相似文献   

18.
MOTIVATION: Membrane dipping loops are sections of membrane proteins that reside in the membrane but do not traverse from one side to the other, rather they enter and leave the same side of the membrane. We applied a combinatorial pattern discovery approach to sets of sequences containing at least one characterised structure described as possessing a membrane dipping loop. Discovered patterns were found to be composed of residues whose biochemical role is known to be essential for function of the protein, thus validating our approach. TMLOOP (http://membraneproteins.swan.ac.uk/TMLOOP) was implemented to predict membrane dipping loops in polytopic membrane proteins. TMLOOP applies discovered patterns as weighted predictive rules in a collective motif method (a variation of the single motif method), to avoid inherent limitations of single motif methods in detecting distantly related proteins. The collective motif method applies several, partially overlapping patterns, which pertain to the same sequence region, allowing proteins containing small variations to be detected. The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity. TMLOOP was applied to the Swiss-Prot database, identifying 1392 confirmed membrane dipping loops, 75 plausible membrane dipping loops hitherto uncharacterised by topology prediction methods or experimental approaches and 128 false positives (8.0%).  相似文献   

19.
We have designed hidden Markov models (HMMs) of structurally conserved repeats that, based on pairwise comparisons, are unconserved at the sequence level. To model secondary structure features these HMMs assign higher probabilities of transition to insert or delete states within sequence regions predicted to form loops. HMMs were optimized using a sampling procedure based on the degree of statistical uncertainty associated with parameter estimates. A PSI-BLAST search initialized using a checkpoint-recovered profile derived from simulated sequences emitted by such a HMM can reveal distant structural relationships with, in certain instances, substantially greater sensitivity than a normal PSI-BLAST search. This is illustrated using two examples involving DNA- and RNA-associated proteins with structurally conserved repeats. In the first example a putative sliding DNA clamp protein was detected in the thermophilic bacterium Thermotoga maritima. This protein appears to have arisen by way of a duplicated β-clamp gene that then acquired features of a PCNA-like clamp, perhaps to perform a PCNA-related function in association with one or more of the many archaeal-like proteins present in this organism. In the second example, β-propeller domains were predicted in the large subunit of UV-damaged DNA-binding protein and in related proteins, including the large subunit of cleavage-polyadenylation specificity factor, the yeast Rse1p and human SAP130 pre-mRNA splicing factors and the fission yeast Rik1p gene silencing protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号