首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of the benzo[c]phenanthridine alkaloids was studied using human hepatocytes which are an excellent model system for biotransformation studies. For analysis of the alkaloids and their metabolites, an electrospray quadrupole ion-trap mass spectrometry (ESI ion-trap MS) connected to a reversed phase chromatographic system based on cyanopropyl modified silica was used. The optimized experimental protocol allowed simultaneous analysis of the alkaloids and their metabolites and enabled study of their uptake into and interconversion in human hepatocytes. The results show that formation of the dihydro metabolite which may be followed by specific O-demethylenation/O-demethylation processes, is probably the main route of biotransformation (detoxification) of the benzo[c]phenanthridines in human hepatocytes. The structure of the main O-demethyl metabolite (2-methoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridin-1-ol; 336.1 m/z,) was proposed by the multi-stage MS and quadrupole time-of-flight MS methods using chemically synthesized standard.  相似文献   

2.
The anti-HIV activity and stability studies of 1,3-dihydrobenzo[c]furan analogue of d4T are reported. The corresponding mononucleoside phosphotriester derivative bearing a S-pivaloyl-2-thioethyl (tBuSATE) group, as biolabile phosphate protection, is also studied.  相似文献   

3.
A detailed phytochemical study of the aerial parts of Bupleurum marginatum Wall. ex DC revealed a novel aryltetraline lactone lignan identified as 9-(benzo[d][1,3]dioxol-5-yl)-6,7,8-trimethoxy-3a,4,9,9a-tetrahydronaphtho[2,3-c]furan-1(3H)-one (marginatoxin) along with nine known compounds and characterization of five other compounds either by GLC/MS or LC/MS techniques. Chemical structures of the isolated compounds were unambiguously elucidated by both 1D, 2D NMR and mass spectrometry techniques.The in vitro cytotoxic activity of both methanol and dichloromethane extracts as well as the isolated compounds was assessed in two human cancer cell lines HepG2 and HeLa using the MTT assay. The new aryltetraline lactone lignan exhibited a potent cytotoxic activity with IC50 values of 12.14 and 16.90 μM after 24 h treatment for HepG2 and HeLa cells, respectively.  相似文献   

4.
To investigate the anti-proliferative effect of a newly discovered NF-kB inhibitor, 6,6-dimethyl-2-(phenylimino)-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one (1a), a series of its analogs (1b-n) were prepared and evaluated for their NF-κB inhibition and anti-proliferative activity against various human cancer cell lines. Slight variation of hydrophobicity by replacement of dimethyl group of 1a at 6-position with bulky isopropyl group and introduction of para-fluoro substitution on 2-phenyl group showed good NF-κB inhibitory activity and anti-proliferative activity. However, excessive increase in hydrophobicity with 2,4,6-trichloro substituents on phenyl group resulted in the loss of both the activities. From the SAR results, 2-phenylimino-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one was identified as the lead scaffold for investigating new anticancer agent through inactivation of NF-κB.  相似文献   

5.
The tetrapeptide, FMRFamide, was first discovered in 1977 in the molluscan nervous system and was found to affect the contractile force of molluscan cardiac muscle and other muscles [1]. Since then, numerous FMRFamide-related peptides (FaRPs) have been reported in both invertebrate and vertebrate species [2], [3], [4], [5], [6], [7], [8] and [9]. We have previously reported the detection and identification of numerous FaRPs in Cancer borealis pericardial organs (POs), one of the major neurosecretory structures in the crustaceans [2] and [3]. Here, we have developed two immunoaffinity-based methods, immunoprecipitation (IP) and immuno-dot blot screening assay, for the enrichment of FaRPs in C. borealis POs. A combined mass spectrometry (MS)-based approach involving both matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-QTOF MS/MS) is used for a more comprehensive characterization of the FaRP family by utilizing high mass accuracy measurement and efficient peptide sequencing. Overall, 17 FMRFamide-related peptides were identified using these two complementary immuno-based approaches. Among them, three novel peptides were reported for the first time in this study.  相似文献   

6.
Abstract

The anti-HIV activity and stability studies of 1,3-dihydrobenzo[c]furan analogue of d4T are reported. The corresponding mononucleoside phosphotriester derivative bearing a S-pivaloyl-2-thioethyl (tBuSATE) group, as biolabile phosphate protection, is also studied.  相似文献   

7.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

8.
Clarithromycin (active against Gram positive infections) and 1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborole derivatives (effective for Gram negative microbes) are the ligands of bacterial RNA. The antimicrobial activities of these benzoxaboroles linked with clarithromycin at 9 or 4″ position were compared. Two synthetic pathways for these conjugates were elaborated. First pathway explored the substitution of the C-9 carbonyl group of macrolactone’s cycle via oxime linker, the second direction used the modification of the 4″-O-group of cladinose via the formation of carbamates of benzoxaboroles. 4″-O-(3-S-(1-Hydroxy-1,3-dihydro-benzo[c][1,2]oxaborole)-methyl-carbamoyl-clarithromycin showed twofold decrease in MICs for S. epidermidis and S. pneumoniae than clarithromycin. 4″-O-Modified clarithromycin demonstrated an efficacy against Gram positive strains only. Compounds with C-9 substitution were more active than 4″-O-substituted antibiotics for susceptible strains E. coli tolC and did not exceed the activity of initial antibiotics.  相似文献   

9.
A microelectrospray ionization tandem Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS(n)) approach for structural characterization of protein phosphorylation is described. Identification of proteolytic peptides is based solely upon mass measurement by high field (9.4 Tesla) FT-ICR MS. The location of the modification within any phosphopeptide is then established by FT-ICR MS(2) and MS(3) experiments. Structural information is maximized by use of electron capture dissociation (ECD) and/or infrared multiphoton dissociation (IRMPD). The analytical utility of the method is demonstrated by characterization of protein kinase A (PKA) phosphorylation. In a single FT-ICR MS experiment, 30 PKA tryptic peptides (including three phosphopeptides) were mass measured by internal calibration to within an absolute mean error of |0.7 ppm|. The location of each of the three sites of phosphorylation was then determined by MS(2) and MS(3) experiments, in which ECD and IRMPD provide complementary peptide sequence information. In two out of three cases, electron irradiation of a phosphopeptide [M + nH](n+) ion produced an abundant charge-reduced [M + nH]((n-1)+*) ion, but few sequence-specific c and z(*) fragment ions. Subsequent IRMPD (MS(3)) of the charge-reduced radical ion resulted in the detection of a large number of ECD-type ion products (c and z ions), but no b or y type ions. The utility of activated ion ECD for the characterization of tryptic phosphopeptides was then demonstrated.  相似文献   

10.
The structures of intact choline phospholipids were determined by positive and negative ion mode fast atom bombardment mass spectrometry, tandem mass spectrometry, and B2/E and B/E constant linked scan mass spectrometry. The molecular weight of the choline lipid could be clearly determined by the appearance of [M + H]+ or [M + Na]+ in the positive ion mode and triplet ions, e.g., [M - 15]-, [M - 60]-, and [M - 86]-, in the negative ion mode. The structures of the triplet ions were assigned to [M - CH3]-, [M - HN(CH3)3]-, and [M - CH2 = CHN(CH3)3]-, respectively, by the MS/MS of each triplet ion, and the origin of the triplet ions was found as the matrix-ion adduct to the target molecule by using the B2/E linked scan technique. The polar group could be identified by the existence of ions indicating glycerophosphocholine and its cleavage products and by the presence of the triplet ions in the negative ion mode. Positional determination of the distribution of constituent fatty acyl groups was carried out by comparing the intensity of deacylated ions from positions 1 and 2 in the positive ion mode and of the ions produced by MS/MS of the triplet ions. From the mass number of the [RCOO]- ion which appeared in the negative ion mode, the molecular weight and degree of unsaturation of the fatty acyl group were determined. The position of double bond(s) in the acyl group was determined from the MS/MS of the [RCOO]- ion.  相似文献   

11.
A series of 1,3-dihydrobenzo[b][1,4]diazepin-2-one derivatives was evaluated as non-competitive mGluR2/3 antagonists. Attachment of an 8-(2-aryl)-ethynyl-moiety produced compounds inhibiting the binding of [3H]-LY354740 to rat mGluR2 with low nanomolar affinity and consistent functional effect at both mGluR2 and mGluR3.  相似文献   

12.
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.  相似文献   

13.
A series of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c]thiophen-4(5H)ones were synthesized and tested to demonstrate in vitro antimicrobial activity. Some of these compounds exhibited a good activity against Staphylococcus aureus, S. epidermidis and Bacillus subtilis.  相似文献   

14.
The increasing use of advanced methods, such as mass spectrometry, for the determination of cytokinins has raised special requirements for the extraction and purification of this class of plant hormones. Extraction of Arabidopsis thaliana plants with three different solvents, [80% (v/v) MeOH, Bieleski's MCF-7, and modified Bieleski's] provided similar yields of most analyzed cytokinins determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). However, the extraction with a modified Bieleski's solvent (MeOH-HCO2H-H2O [15:1:4, v/v/v]) gave the highest responses of deuterated cytokinins (used as test compounds) in plant extracts as compared to the responses of pure deuterated standards (relative internal standard response, RISR). Purification of cytokinins using Oasis MCX sorbent with reversed-phase and cation-exchange characteristics, in comparison to the DEAE Sephadex RP-C18 method, provided higher levels of zeatin riboside monophosphate and similar levels of cytokinin bases, ribosides and glucosides. Using this method the content of UV-absorbing contaminates was decreased by about 90% and the RISR values of all tested cytokinin standards but riboside monophosphates were increased about two-fold. The former method provided preparations more suitable for HPLC/MS/MS analysis with respect to simplicity and sample purity.  相似文献   

15.
To clarify the mechanism of fruit disease resistance activated by sweating treatment, ‘Guoqing NO.1’ Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two‐dimensional gel electrophoresis (2‐DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC‐MS) and high‐performance liquid chromatography/electrospray ionization‐time of flight‐mass spectrometry (HPLC‐qTOF‐MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2O2) and salicylic acid (SA) were significantly accumulated in the sweating‐treated fruit. Thereafter, some stress‐response proteins and metabolites [such as ascorbate peroxidase (APX), β‐1,3‐glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating‐treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA‐induced resistance pathway, which can induce the stress‐response proteins and metabolites that can directly inhibit pathogen development.  相似文献   

16.
Optically active 7-hydroxy-7,8-dihydrobenzo[a]pyrene and 8-hydroxy-7,8-dihydrobenzo[a]pyrene were identified as two of the major metabolites formed by incubation of 7,8-dihydrobenzo[a]pyrene with rat liver microsomes. Optically active 9-hydroxy-9,10-dihydrobenzo[a]pyrene and 10-hydroxy-9,10-dihydrobenzo[a]pyrene were similarly identified as two of the minor metabolites of 9,10-dihydrobenzo[a]pyrene. The formation of these metabolites was abolished either by prior treatment of liver microsomes with carbon monoxide or the absence of NADPH, but was not inhibited by an epoxide hydrolase inhibitor. The results indicate that the aliphatic carbons of dihydro polycyclic aromatic hydrocarbons may undergo stereoselective hydroxylation reactions catalyzed by the cytochrome P-450 system of rat liver microsomes.  相似文献   

17.
18.
Three amides, N-salicyloyl-2-aminopropan-1,3-diol (1) and 1-acetyl-N-salicyloyl-2-aminopropan-3-ol (2) including a natural product, N-salicyloyl-2-aminopropan-1-ol (3) were isolated from an ethyl acetate extract of the culture filtrate of Streptomyces hygroscopicus [corrected] The structures of these compounds were unambiguously established by interpretation of their spectral data including, a series of 1D and 2D-NMR and MS analyses. Compounds 1-3 showed significant antibacterial activity against a wide range of Gram positive and Gram negative bacteria.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAHs) are metabolized to trans-dihydrodiol proximate carcinogens by human epoxide hydrolase (EH) and CYP1A1. Human dihydrodiol dehydrogenase isoforms (AKR1C1-AKR1C4), members of the aldo-keto reductase (AKR) superfamily, activate trans-dihydrodiols by converting them to reactive and redox-active o-quinones. We now show that the constitutively and widely expressed human AKR, aldehyde reductase (AKR1A1), will oxidize potent proximate carcinogen trans-dihydrodiols to their corresponding o-quinones. cDNA encoding AKR1A1 was isolated from HepG2 cells, overexpressed in Escherichia coli, purified to homogeneity, and characterized. AKR1A1 oxidized the potent proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene with a higher utilization ratio (V(max)/K(m)) than any other human AKR. AKR1A1 also displayed a high V(max)/K(m) for the oxidation of 5-methylchrysene-7,8-diol, benz[a]anthracene-3,4-diol, 7-methylbenz[a]anthracene-3,4-diol, and 7,12-dimethylbenz[a]anthracene-3,4-diol. AKR1A1 displayed rigid regioselectivity by preferentially oxidizing non-K-region trans-dihydrodiols. The enzyme was stereoselective and oxidized 50% of each racemic PAH trans-dihydrodiol tested. The absolute stereochemistries of the reactions were assigned by circular dichroism spectrometry. AKR1A1 preferentially oxidized the metabolically relevant (-)-benzo[a]pyrene-7(R),8(R)-dihydrodiol. AKR1A1 also preferred (-)-benz[a]anthracene-3(R),4(R)-dihydrodiol, (+)-7-methylbenz[a]anthracene-3(S),4(S)-dihydrodiol, and (-)-7,12-dimethylbenz[a]anthracene-3(R),4(R)-dihydrodiol. The product of the AKR1A1-catalyzed oxidation of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene was trapped with 2-mercaptoethanol and characterized as a thioether conjugate of benzo[a]pyrene-7,8-dione by LC/MS. Multiple human tissue expression array analysis showed coexpression of AKR1A1, CYP1A1, and EH, indicating that trans-dihydrodiol substrates are formed in the same tissues in which AKR1A1 is expressed. The ability of this general metabolic enzyme to divert trans-dihydrodiols to o-quinones suggests that this pathway of PAH activation may be widespread in human tissues.  相似文献   

20.
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate–peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI–MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号