首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous experiments on alloxan diabetogenicity suggest that alloxan increases the permeability of B-cell plasma membranes by generation of noxious free radicals. Whether the radicals are generated intra- or extracellularly has however been disputed. To test if extracellularly generated free radicals could decrease trypan blue exclusion of dispersed islet cells, a radical-generating solution of xanthine oxidase/hypoxanthine was employed. The solution increased dye uptake by cells in the cell suspension. Superoxide dismutase and catalase but not scavengers of hydroxyl radicals protected against the increase in dye uptake. Both L- and D-glucose protected the cells from injury. It is concluded that extracellularly generated free radicals induce damage to the plasma membrane of islet cells. The result strengthens the hypothesis of plasma membrane damage by extracellularly generated free radicals as the primary event in alloxan diabetogenicity and may provide a link for explanation of damage caused by islet inflammation in juvenile diabetes.  相似文献   

2.
To find out the mechanism of modulating the deformability of erythrocytes with low intensity He-Ne laser action, we studied the effect of low intensity He-Ne laser on the ultrastructure of human erythrocyte membrane. Erythrocytes were treated with free radicals from a Fenton reaction system before exposing them to low intensity He-Ne laser. The ultrastructure of damaged erythrocyte membrane was examined by atomic force microscopy. The results showed that the erythrocyte membrane became very rough and the molecules on the surface of the membrane congregated into particles of different magnitudes sizes after treating with free radicals. Comparing the degree of congregation of the molecular particles in the non-irradiated group and the He-Ne laser irradiated (9 mW and 18 mW) group, we found the average size of molecular particles in the laser irradiated group was smaller than that in the non-irradiated group, indicating that the low intensity laser had repairing function to the damage of erythrocyte membrane produced by the free radicals.  相似文献   

3.
巨噬细胞产生NO.和O_2~-自由基的分子机理   总被引:2,自引:0,他引:2  
建立了用顺磁共振(ESR)和化学发光技术测定巨噬细胞产生NO和氧自由基的方法.捕捉到了巨噬细胞受佛波酯刺激产生的NO.和O-2自由基.测定了在不同浓度L-精氨酸存在时佛波酯刺激后巨噬细胞产生的NO自由基.研究了巨噬细胞产生的NO和氧自由基的分子机理.结果表明巨噬细胞不仅产生氧自由基而且产生NO自由基.NADPH氧化酶产生氧自由基的部位位于巨噬细胞膜的外侧.NO合成酶活化产生NO自由基比NADPH氧化酶活化产生氧自由基晚几分钟.  相似文献   

4.
The antioxidant activity of a representative series of free, glycine- and taurine-conjugated bile acids was evaluated by two different chemiluminescent assays: (a) the enhanced chemiluminescence system based on horseradish peroxidase and luminol/oxidant/enhancer reagent, and (b) the hypoxanthine/xanthine oxidase/Fe2+-EDTA/luminol system. Bile acids were studied at final concentrations ranging from 1 to 28 mmol/L. All of the bile acids studied inhibited the steady-state chemiluminescent reaction and the extent of inhibition depended upon the structure of the bile acids, whereas the duration was related to bile acid concentration. The mechanism of the light inhibition is probably due to trapping of oxygen free radicals generated in the chemiluminescent reactions, within bile acid micelles. The free radicals trapped into micelles reduced the formation of luminol radicals and consequently the light output; when the micelles were saturated, the oxygen free radicals in solution again produced luminol radicals. The micelle interaction with reactive oxygen species could be a physiological mechanism of defence against the toxicity of those species in the intestinal content. On the other hand, alterations in bile acid organ distribution, concentration and composition leads to a membrane damage caused by their detergent-like properties, which could be associated to oxygen free radical production. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
The aim of this study was to elaborate a simple in vitro model for rapid and quantitative measurement of free radical effects. Free radical generating characteristics of PMS were measured in the case of red blood cell (RBC) membrane. The mechanism of free radical action was investigated in MgCl2, CaCl2, BaCl2 and in Verapamil HCl medium. The most important result of the investigations is as follows: Membrane damage of RBC provoked by the mechanism of free radical generation of PMS is proportional to the intracellular K+-efflux and to the extracellular Na+-influx. The PMS dependent K+-efflux in a NaCl containing medium in the presence of CaCl2 increases significantly, while it remains unchanged in MgCl2 medium. The PMS dependent K+-efflux and Na+-influx were considerably decreased by Verapamil HCl in NaCl containing solution. We have come to the conclusion that new, non-selective pores are formed in the membrane. The measure of the damage increases in the presence of Ca2+ions and decreases in the medium containing Verapamil HCl.  相似文献   

6.
A protonated, charged free radical of methylphenazine methosulfate (PMS) was generated at carbon electrodes in a buffered aqueous medium. This radical diffused from the aqueous phase into nonpolar organic solvents, where it was stable for extended periods. The electron spin resonance (ESR) spectrum of the free radical species in the nonpolar solvent was significantly different from that of the aqueous species. This difference was attributed to the loss of electric charge through deprotonation at the solution interface, followed by solvation of the uncharged species in the organic phase. ESR spectra are presented for PMS free radicals in polar and nonpolar liquid phases, along with electrochemical results and conclusions regarding the mechanisms of movement and toxicity of phenazyl free radicals in biological systems.  相似文献   

7.
The cell-damaging effects of N-tert-butoxypyridine-2-thione (tBuOPT), which generates alkoxyl and thiyl radicals on photolysis, have been investigated in L5178Y mouse lymphoma cells. The UVA irradiation of 2.5 microM tBuOPT inhibits strongly cell growth and cell viability, causes pronounced membrane damage, and induces micronuclei. Without irradiation, tBuOPT does not cause any cell damage at 2.5 microM concentration. The phototoxicity of tBuOPT is effectively inhibited by the radical scavenger glutathione, while the photogenotoxicity (micronuclei induction) is not affected by this strong hydrogen-atom donor. Thus, for the cytotoxicity and genotoxicity different reactive species seems to be responsible. The cytotoxicity is presumably caused by oxyl radicals, which are derived from tert-butoxyl radicals generated by photocleavage of tBuOPT, while in the genotoxicity the less reactive pyridyl-2-thiyl radicals appear to play a role. These results demonstrate that N-alkoxypyridinethiones are useful photochemical sources of oxyl and thiyl radicals to elucidate biological effects caused by these free radicals.  相似文献   

8.
Azo compounds enable us to generate peroxyl radicals by thermal decomposition at a constant rate and at a desired site, that is, water-soluble compounds produce initiating radicals in an aqueous phase and lipid-soluble compounds initiate the oxidation within the membrane-lipid layer. Using these radicals generated in different sites, we oxidized red blood cell ghost membranes to study the relationships between alpha-tocopherol depletion, initiation of lipid peroxidation, and protein damage. When radicals were generated in the aqueous phase, the loss of membrane protein thiols was observed concurrently with the consumption of membrane tocopherol and after tocopherol was exhausted the peroxidation of membrane lipids occurred. On the other hand, when radicals were initiated within the lipid region, the oxidation of thiols and the formation of thiobarbituric acid-reactive substances were suppressed to give an induction period until tocopherol fell below a critical level. Our results indicate that the surface thiols of extrinsic proteins may compete with alpha-tocopherol for trapping aqueous radicals and spare tocopherol to some extent, whereas the oxidation of intrinsic buried thiols may commence due to lipid-derived radicals produced after tocopherol was consumed. In conclusion, alpha-tocopherol in the membrane can break the free radical chain efficiently to inhibit the lipid peroxidation. However, the effect of tocopherol on the inhibition of membrane protein damage, exhibited by the loss of thiols and the formation of high-molecular-weight proteins, would be different depending on the site of initial radical generation.  相似文献   

9.
Free radical mediated x-ray damage of model membranes.   总被引:3,自引:0,他引:3       下载免费PDF全文
The damaging effects of synchrotron-derived x rays on aqueous phospholipid dispersions have been evaluated. The effect of degree of lipid hydration, phospholipid chemical structure, mesophase identity, aqueous medium composition, and incident flux on the severity and progress of damage was quantified using time-resolved x-ray diffraction and chromatographic analysis of damage products. Electron spin resonance measurements of spin-trapped intermediates generated during irradiation suggest a free radical-mediated process. Surprisingly, radiation damage effects revealed by x-ray diffraction were imperceptible when the lamellar phases were prepared under water-stressed conditions, despite the fact that x-ray-induced chemical breakdown of the lipid occurred regardless of hydration level. Of the fully hydrated lipid systems studied, saturated diacyl-phosphatidylcholines were most sensitive to radiation damage compared to the ester- and ether-linked phosphatidylethanolamines and the ether-linked phosphatidylcholines. The inclusion of buffers or inorganic salts in the dispersing medium had only a minor effect in reducing damage development. A small inverse dose-rate effect was found when the x-ray beam intensity was changed 15-fold. These results contribute to our understanding of the mechanism of radiation damage, to our appreciation of the importance of monitoring both structure and composition when evaluating biomaterials radiation sensitivity, and to the development of strategies for eliminating or reducing the severity of damage due to an increasingly important source of x rays, synchrotron radiation. Because damage is shown to be free radical mediated, these results have an important bearing on age-related accumulation of free radicals in cells and how these might compromise membrane integrity, culminating in cell death.  相似文献   

10.
This article assesses whether oxygen-derived free radicals are one of the molecular causes of life-threatening arrhythmias that arise upon reperfusion of the ischemic myocardium. Evidence supporting this proposition has been obtained from studies of the effects of free radical scavengers and antioxidants, free radical generating systems, inhibition of various sources of free radicals and studies investigating the formation of free radicals and their products during early reperfusion. It has been hypothesized that free radical formation causes localised membrane damage to the sarcolemma that results in focal alterations in transmembrane ionic fluxes, particularly potassium. These changes in ionic fluxes may then lead to electrophysiological abnormalities that culminate in ventricular arrhythmias.  相似文献   

11.
Differences in the susceptibility of plant membrane lipids to peroxidation   总被引:5,自引:0,他引:5  
Peroxidation of three membrane lipid preparations from plants was initiated using Fe-EDTA and ascorbate and quantified as the production of aldehydes and loss of esterified fatty acids. Using liposomes prepared from commercial soybean asolecithin, the degree of peroxidation was shown to be dependent on: the free radical dose, which was varied by the ascorbate concentration; the presence of tocopherol in the liposome; the configuration, of the liposome, multilamellar or unilamellar; and time after initiation. There were dramatic interactions among these factors which led to the conclusion that in comparing the susceptibility of different membrane preparations it is essential to examine the kinetics of the peroxidation reactions. The composition of the liposome was a major determinant of the degree of peroxidation and of the type of degradative reactions initiated by the oxygen free radicals. A fresh polar lipid extract from Typha pollen had very similar fatty acid composition to the soybean asolecithin, but was more resistant to peroxidation as shown by less aldehyde production and increased retention of unsaturated fatty acids after treatment. Similarly, microsomal membranes from the crowns of non-acclimated and cold acclimated winter wheat (Triticum aestivum L.) seedlings had a much higher linolenic acid content than soybean asolecithin but was much more resistant to peroxidation. In the winter wheat microsomes, the loss of esterified fatty acids was not selective for the unsaturated fatty acids; consequently, even with 40% degradation, the degree of unsaturation in the membrane did not decrease. These different reaction mechanisms which occur in plant membranes may explain why measurements of fatty acid unsaturation fail to detect peroxidative reactions during processes such as senescence, aging and environmental stress.  相似文献   

12.
The exposure of isolated and cultured cells to oxygen free radicals generated extracellularly or intracellularly during the metabolism of foreing compounds results in the development of damage that eventually lead to cell death. Multiple mechanisms are involved in these cytopathological processes, including direct attack of free radicals to macromolecules essential for cell life, as well as indirect activation of catabolic processes such as proteases, endonucleases and phospholipases. A key role in triggering these indirect events is played by Ca2+ whose cytosolic concentration during oxidative stress raises well above the physiological limits.  相似文献   

13.
Cell killing by ionizing radiation has been shown to be caused by hydroxyl free radicals formed by water radiolysis. We have previously suggested that the killing is not caused by individual OH free radicals but by the interaction of volumes of high radical density with DNA to cause locally multiply damaged sites (LMDS) (J. F. Ward, Radiat. Res. 86, 185-195, 1985). Here we test this hypothesis using hydrogen peroxide as an alternate source of OH radicals. The route to OH production from H2O2 is expected to cause singly damaged sites rather than LMDS. Chinese hamster V79-171 cells were treated with H2O2 at varying concentrations for varying times at 0 degree C. DNA damage produced intracellularly was measured by alkaline elution and quantitated in terms of Gray-equivalent damage by comparing the rate of its elution with that of DNA from gamma-irradiated cells. The yield of DNA damage produced increases with increasing concentration of H2O2 and with time of exposure. H2O2 is efficient in producing single-strand breaks; treatment with 50 microM for 30 min produces damage equivalent to that formed by 10 Gy of gamma irradiation. In the presence of a hydroxyl radical scavenger, dimethyl sulfoxide (DMSO), the yield of damage decreases with increasing DMSO concentration consistent with the scavenging of hydroxyl radicals traveling an average of 15 A prior to reacting with the DNA. In contrast to DNA damage production, cell killing by H2O2 treatment at 0 degree C is inefficient. Concentrations of 5 X 10(-2) M H2O2 for 10 min are required to produce significant cell killing; the DNA damage yield from this treatment can be calculated to be equivalent to 6000 Gy of gamma irradiation. The conclusion drawn is that individual DNA damage sites are ineffectual in killing cells. Mechanisms are suggested for killing at 0 degree C at high concentrations and for the efficient cell killing by H2O2 at 37 degrees C at much lower concentrations.  相似文献   

14.
The efficient use of preparative protein purification in a multicompartment electrolyzer with Immobiline membranes depends on the knowledge of membrane characteristics. For that purpose, an experimental investigation of the effects of ionic charges on the membrane characteristics has been carried out through the measurements of membrane swelling and conductance. We also investigated the effects on the electrolyzer behaviour of operating parameters such as the Immobiline concentration and the presence of ion-exchange membranes. Data show that polyacrylamide gel degree of swelling is strongly dependent upon the pH and the ionic strength of the bathing solution as well as on the type and molarity of charges incorporated in the gel. The conductance of supported Immobiline gels in contact with uni-univalent chloride solutions has been measured by means of a mercury cell. The membrane conductance is also influenced by the ionic strength of the equilibrium solution and the presence of weak ionizable groups in the gel matrix. This study has demonstrated the close link between electrochemical and electromechanical properties of Immobiline membranes.  相似文献   

15.
Lipid membranes have been shown to scavenge free radicals generated by various means. However, under oxidative conditions, unsaturated lipids within membranes can produce damaging free radicals. We have determined the relative importance of these two conflicting properties of lipid membranes with the use of liposomal membrane studies. (1) Liposome membranes can protect extra-liposomal albumin from free radicals derived from sources other than peroxidizing lipid. When albumin or copper (an essential component of the free radical generating systems used) were encapsulated, protein damage was further reduced. (2) Using sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis (PAGE) we demonstrate that the exposure of albumin to peroxidizing liposome membranes results in both cross-linking and degradation. Our results indicate that protein damage is substantially less than in the case of other biologically relevant free radical generating systems. We discuss our findings with respect to membrane function and the in vivo exposure of cells to free radicals.  相似文献   

16.
本研究将爪蟾卵母细胞暴露于黄嘌呤氧化酶-次黄嘌呤(XO-HPX)反应系统,观察自由基对细胞膜及其乙酰胆碱(Ach)受体的损伤,结果表明,在自由基的作用下膜被动电学参数发生显著变化,其效果与XO-HPX的浓度和作用时间成正比,XO-HPX作用2h不影响膜功能,大于4h各项膜功能指标明显下降,Ach极化反应减弱,上升时间延长,去极化幅度下降,下降1/2时间缩短;超氧化物歧化酶(SOD)可消除自由基对上述膜参数的影响。枸杞多糖可以使损伤膜的被动电学参数改善,但对Ach去极化反应无恢复作用。结果提示,XO-HPX反应系统是通过产生超氧阴离子自由基造成细胞膜和Ach受体的损伤,枸杞多糖可对抗自由基对质膜的作用,但对M样受体无效。  相似文献   

17.
The Japanese herbal medicine Sho-saiko-to-go-keishi-ka-shakuyaku-to (TJ-960) has been demonstrated to have an antioxidant action by quenching free radicals. The effects of TJ-960 on the tocopheroxy radicals generated by an arachidonic acid and lipoxygenase oxidation system were compared with those of the ascorbate and glutathione in vitamin E-enriched rat liver microsomes and submitochondrial membrane particles (SMP). Using electron spin resonance spectrometry, the disappearance of the tocopheroxy radicals after addition of glutathione and ascorbate was detected in microsomes and SMP, withh ascorbate displaying a more potent action than glutathione. Addition of TJ-960 demonstrated a similar effect on the tocopheroxy radicals in microsomes and SMP. In the presence of TJ-960, ascorbate, and glutathione, the loss of vitamin E in the vitamin E-enriched microsomes of rat liver undergoing oxidation was slowed down. In this paper, we introduced TJ-960 as another replenisher of vitamin E in membrane, increasing the membrane's resistance against oxidative damage.  相似文献   

18.
Incubation of RSU 1069 in the presence of biologically active double-stranded phi X174 DNA resulted in, depending on pH, ionic strength and concentration of drug, inactivation of the DNA. A variety of lesions are induced including a high number of single-strand breaks and alkali-labile lesions, which are at most partly lethal. The main inactivating damage consists probably of base damage, induced by alkylation. A considerable part of the damage induced by RSU 1069 can be repaired by the various repair enzymes of the bacterial host of the phi X174 DNA. Finally the damage (pattern) depends considerably on the ionic composition of the reaction solution, which can be explained by an equilibrium model presented in this paper.  相似文献   

19.
Oxidative DNA damage was investigated by free radicals generated from HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer, which is widely used in biochemical or biological studies, in the presence of Au(III). The effect of free radicals on the DNA damage was ascertained by gel electrophoresis, electron spin resonance (ESR) spectroscopy and circular dichroism (CD) spectroscopy. ESR results indicated the generation of nitrogen-centered cationic free radicals from the HEPES in the presence of Au(III) which cause the DNA damage. No ESR spectra were observed for phosphate, tris(hydroxymethyl)aminomethane (Tris-HCl) and acetate buffers in the presence of Au(III) or for HEPES buffer in the presence of other metal ions such as Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pd(II) or [Au(III)(TMPyP)](5+) and [Pd(II)(TMPyP)](4+), where [H(2)(TMPyP)](4+) denotes tetrakis(1-methylpyridium-4-yl)porphyrin. Consequently, no DNA damage was observed for these buffer agents (e.g., phosphate, Tris-HCl or acetate) in the presence of Au(III) or for HEPES in the presence of other metal ions or the metalloporphyrins mentioned above. No detectable inhibitory effect on the DNA damage was observed by using the typical scavengers of reactive oxygen species (ROS) ()OH, O(2)(-) and H(2)O(2). This non-inhibitory effect indicated that no reactive oxygen species were generated during the incubation of DNA with HEPES and Au(III). The drastic change in CD spectra from positive ellipticity to negative ellipticity approximately at 270 nm with increasing concentration of Au(III) also indicated the significant damage of DNA. Only HEPES or Au(III) itself did not damage DNA. A mechanism for the damaging of DNA is proposed.  相似文献   

20.
迷迭香酸对羟自由基所致小鼠肝线粒体损伤的保护作用   总被引:1,自引:0,他引:1  
探索迷迭香酸对羟自由基致小鼠肝脏线粒体氧化损伤的保护作用。采用羟自由基(.OH),诱导小鼠肝线粒体损伤后,通过测定线粒体肿胀度、膜流动性、丙二醛(MDA)含量及琥珀酸脱氢酶(SDH)活性等指标以确定迷迭香酸对小鼠肝线粒体羟自由基损伤的保护作用。结果迷迭香酸剂量依赖地抑制线粒体肿胀,提高膜流动性,降低MDA的生成,增强SDH活性,差异显著。本实验证明迷迭香酸可以抑制.OH所致的线粒体损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号