首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strains of Caulobacter crescentus express a paracrystalline surface layer (S-layer) consisting of the protein RsaA. Mutants of C. crescentus NA1000 and CB2, isolated for their ability to grow in the absence of calcium ions, uniformly no longer had the S-layer attached to the cell surface. However, RsaA was still produced, and when colonies grown on calcium-sufficient medium were examined, large two-dimensional arrays of S-layer were found intermixed with the cells. Such arrays were not found in calcium-deficient medium even when high levels of magnesium ions were provided. The arrays could be disrupted with divalent ion chelators and more readily with the calcium-selective ethylene glycol-bis (beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). Thus, the outer membrane surface was not needed as a template for self-assembly, but calcium likely was. The cell surface and S-layer gene of assembly-defective mutants of NA1000 were examined to determine the basis of the S-layer surface attachment defect. Mutants had no detectable alteration in the rough lipopolysaccharide (LPS) or a characterized capsular polysaccharide, but another polysaccharide molecule was greatly reduced or absent in all calcium-independent mutants. The molecule was shown to be a smooth LPS with a core sugar and fatty acid complement identical to those of the rough LPS and an O polysaccharide of homogeneous length, tentatively considered to be composed of 4,6-dideoxy-4-amino hexose, 3,6-dideoxy-3-amino hexose, and glycerol in equal proportions. This molecule (termed SLPS) was detectable by surface labeling with a specific antiserum only when the S-layer was not present. The rsaA genes from three calcium-independent mutants were cloned and expressed in an S-layer-negative, SLPS-positive strain. A normal S-layer was produced, ruling out defects in rsaA in these cases. It is proposed that SLPS is required for S-layer surface attachment, possibly via calcium bridging. The data support the possibility that calcium binding is required to prevent an otherwise lethal effect of SLPS. If true, mutations that eliminate the O polysaccharide of SLPS eliminate the lethal effects of calcium-deprived SLPS, at the expense of S-layer attachment.  相似文献   

2.
S G Walker  S H Smith    J Smit 《Journal of bacteriology》1992,174(6):1783-1792
Several methods for isolation of the paracrystalline surface (S) layer protein (RsaA) of Caulobacter crescentus CB15A were evaluated. Treatment of cells with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer at pH 2 was the most effective means of selectively removing RsaA from cells, and after neutralization, the protein was capable of reassembling into a paracrystalline structure. Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid treatment could also be used to extract RsaA and yielded protein capable of reassembly. The success of the methods was likely related to disruption of calcium-mediated bonding; calcium was required for recrystallization, while magnesium and strontium ions were ineffective. Antibody was raised against purified RsaA and, along with the S-layer extraction techniques, was used to evaluate 42 strains of caulobacters isolated from a variety of aquatic and wastewater treatment locations. A single characteristic protein could be isolated from the 35 strains that produced an S layer; with one exception, no proteins were extracted from strains that had no S layer. The presumed S-layer proteins ranged in size from 100 to 193 kDa. All of these proteins specifically reacted with anti-RsaA serum by Western immunoblot analysis. In strain CB15A, a specific S-layer-associated oligosaccharide has been proposed to be involved in a calcium-mediated attachment of the S layer to the cell surface. This molecule was detected by Western immunoblotting with a specific antiserum and on polyacrylamide gels stained for polysaccharides. A comparable band was found in all S-layer-producing strains and for most, S-layer-associated oligosaccharide-specific antibody reacted with them in Western analysis. Overall, in freshwater caulobacters at least portions of their S-layer structures appear to be strongly conserved entities, as well as the means of attachment to the cell surface.  相似文献   

3.
Caulobacter crescentus is used to display foreign peptides at high density as insertions into the surface (S)-layer protein (RsaA). Many recombinant RsaA proteins, however, are cleaved by SapA, a 71-kDa metalloprotease, suggesting a role in maintaining S-layer integrity. When overexpressed on a multicopy plasmid SapA was detected on the surface by fluorescent antibody only if RsaA and the O-side chain of LPS that mediates S-layer attachment were removed by mutation, indicating an outer membrane location beneath the S-layer. Secretion was mediated by the RsaA type 1 transporter since secretion was eliminated in transporter deficient strains or by C-terminal deletions in SapA (the presumed location of type 1 secretion signals). Secretion was required to become an active protease; mass spectrometry suggested this might be due to N-terminal processing during secretion, a feature shared with other type 1-secreted proteases. Overexpression leads to additional processing C-terminal to the protease domain, producing a 45-kDa protein. This was demonstrated to be self-processing. Deletion analysis revealed the C-terminal 100 amino acids were sufficient for anchoring and secretion. When protein G was fused to the last 238 amino acids of SapA it was secreted, surface attached and bound immunoglobulin, indicating potential for foreign protein display.  相似文献   

4.
The entire nucleotide sequence of the rsaA gene, encoding the paracrystalline surface (S) layer protein (RsaA) of Caulobacter crescentus CB15A, was determined. The rsaA gene encoded a protein of 1026 amino acids, with a predicted molecular weight of 98,132. Protease cleavage of mature RsaA protein and amino acid sequencing of retrievable peptides yielded two peptides: one aligned with a region approximately two-thirds the way into the predicted amino acid sequence and the second peptide corresponded to the predicted carboxy terminus. Thus, no cleavage processing of the carboxy portion of the RsaA protein occurred during export, and with the exception of the removal of the initial methionine residue, the protein was not processed by cleavage to produce the mature protein. The predicted RsaA amino acid profile was unusual, with small neutral residues predominating. Excepting aspartate, charged amino acids were in relatively low proportion, resulting in an especially acidic protein, with a predicted pI of 3.46. As with most other sequenced S-layer proteins, RsaA contained no cysteine residues. A homology scan of the Swiss Protein Bank 17 produced no close matches to the predicted RsaA sequence. However, RsaA protein shared measurable homology with some exported proteins of other bacteria, including the hemolysins. Of particular interest was a specific region of the RsaA protein that was homologous to the repeat regions of glycine and aspartate residues found in several proteases and hemolysins. These repeats are implicated in the binding of calcium for proper structure and biological activity of these proteins. Those present in the RsaA protein may perform a similar function, since S-layer assembly and surface attachment requires calcium. RsaA protein also shared some homology with 10 other S-layer proteins, with the Campylobacter fetus S-layer protein scoring highest.  相似文献   

5.
The secretion signal of the Caulobacter crescentus S-layer protein (RsaA) was localized to the C-terminal 82 amino acids of the molecule. Protein yield studies showed that 336 or 242 C-terminal residues of RsaA mediated secretion of >50 mg of a cellulase passenger protein per liter to the culture fluids.  相似文献   

6.
The S-layer of the gram-negative bacterium Caulobacter crescentus is composed of a single protein, RsaA, that is secreted and assembled into a hexagonal crystalline array that covers the organism. Despite the widespread occurrence of comparable bacterial S-layers, little is known about S-layer attachment to cell surfaces, especially for gram-negative organisms. Having preliminary indications that the N terminus of RsaA anchors the monomer to the cell surface, we developed an assay to distinguish direct surface attachment from subunit-subunit interactions where small RsaA fragments are incubated with S-layer-negative cells to assess the ability of the fragments to reattach. In doing so, we found that the RsaA anchoring region lies in the first approximately 225 amino acids and that this RsaA anchoring region requires a smooth lipopolysaccharide species found in the outer membrane. By making mutations at six semirandom sites, we learned that relatively minor perturbations within the first approximately 225 amino acids of RsaA caused loss of anchoring. In other studies, we confirmed that only this N-terminal region has a direct role in S-layer anchoring. As a by-product of the anchoring studies, we discovered that Sap, the C. crescentus S-layer-associated protease, recognized a cleavage site in the truncated RsaA fragments that is not detected by Sap in full-length RsaA. This, in turn, led to the discovery that Sap was an extracellular membrane-bound protease, rather than intracellular, as previously proposed. Moreover, Sap was secreted to the cell surface primarily by the S-layer type I secretion apparatus.  相似文献   

7.
The regular surface protein structure (S-layer) of Caulobacter crescentus was analyzed by electron microscopy and three-dimensional image reconstruction to a resolution of 2 nm. Projections showed that the S-layer is an array of ring structures, each composed of six subunits that are arranged on a lattice with p6 symmetry. Three-dimensional reconstructions showed that the ring subunits were approximately rod-shaped structures and were perpendicular to the plane of the array, with a linker arm emanating from approximately the middle of the rod, accounting for the connections between the rings. The calculated subunit mass was ca. 100 kDa, very close to the size of RsaA (the protein known to be at least the predominant species in the S-layer) predicted from the DNA sequence of the rsaA gene. The core region of the rings creates an open pore 2.5 to 3.5 nm in diameter. The size of the gaps between the neighboring unit cells is in the same range, suggesting a uniform porosity predicted to exclude molecules larger than ca. 17 kDa. Attempts to remove membrane material from S-layer preparations with detergents revealed that the structure spontaneously rearranged into a mirror-image double layer. Negative-stain and thin-section electron microscopy examination of colonies of C. crescentus strains with a mutation in a surface molecule involved in the attachment of the S-layer showed that shed RsaA protein organized into large sheets. The sheets in turn organized into stacks that tended to accumulate near the upper surface of the colony. Image reconstruction indicated that these sheets were also precise mirror-image double layers, and thickness measurements obtained from thin sections were consistent with this finding. The sheets were absent when these mutant strains were grown without calcium, supporting other data that calcium is involved in attachment of the S-layer to a surface molecule and perhaps in subunit-subunit interactions. We propose that when the membrane is removed from S-layer fragments by detergents or the attachment-related surface molecule is absent, the attachment sites of the S-layer align precisely to form a double layer via a calcium interaction.  相似文献   

8.
The paracrystalline surface (S)-layer of Caulobacter crescentus is composed of a single secreted protein (RsaA) that interlocks in a hexagonal pattern to completely envelop the bacterium. Using a genetic approach, we inserted a 12 amino acid peptide from Pseudomonas aeruginosa strain K pilin at numerous semirandom positions in RsaA. We then used an immunological screen to identify those sites that presented the inserted pilin peptide on the C. crescentus cell surface as a part of the S-layer. Eleven such sites (widely separated in the primary sequence) were identified, demonstrating for the first time that S-layers can be readily exploited as carrier proteins to display ‘epitope-size’ heterologous peptides on bacterial cell surfaces. Whereas intact RsaA molecules carrying a pilin peptide could always be found on the surface of C. crescentus regardless of the particular insertion site, introduction of the pilin peptide at 9 of the 11 sites resulted in some proteolytic cleavage of RsaA. Two types of proteolytic phenomena were observed. The first was characterized by a single cleavage within the pilin peptide insert with both fragments of the S-layer protein remaining anchored to the outer membrane. The other proteolytic phenomenon was characterized by cleavage of the S-layer protein at a point distant from the site of the pilin peptide insertion. This cleavage always occurred at the same location in RsaA regardless of the particular insertion site, yielding a surface-anchored 26 kDa proteolytic fragment bearing the RsaA N-terminus; the C-terminal cleavage product carrying the pilin peptide was released into the growth medium. When the results of this work were combined with the results of a previous study, the RsaA primary sequence could be divided into three regions with respect to the location of a peptide insertion and its effect on S-layer biogenesis: (i) insertions in the extreme N-terminus of RsaA either produce no apparent effect on S-layer biogenesis or disrupt surface-anchoring of the protein; (ii) insertions in the extreme C-terminus either produce no apparent effect on S-layer biogenesis or disrupt protein secretion; and (iii) insertions more centrally located in the protein either have no apparent effect on S-layer biogenesis or result in proteolytic cleavage of RsaA. These data are discussed in relation to our previous assignment of the RsaA N- and C-terminus as regions that are important for surface anchoring and secretion respectively.  相似文献   

9.
Caulobacter crescentus is a gram-negative bacterium that produces a two-dimensional crystalline array on its surface composed of a single 98-kDa protein, RsaA. Secretion of RsaA to the cell surface relies on an uncleaved C-terminal secretion signal. In this report, we identify two genes encoding components of the RsaA secretion apparatus. These components are part of a type I secretion system involving an ABC transporter protein. These genes, lying immediately 3′ of rsaA, were found by screening a Tn5 transposon library for the loss of RsaA transport and characterizing the transposon-interrupted genes. The two proteins presumably encoded by these genes were found to have significant sequence similarity to ABC transporter and membrane fusion proteins of other type I secretion systems. The greatest sequence similarity was found to the alkaline protease (AprA) transport system of Pseudomonas aeruginosa and the metalloprotease (PrtB) transport system of Erwinia chrysanthemi. The prtB and aprA genes were introduced into C. crescentus, and their products were secreted by the RsaA transport system. Further, defects in the S-layer protein transport system led to the loss of this heterologous secretion. This is the first report of an S-layer protein secreted by a type I secretion apparatus. Unlike other type I secretion systems, the RsaA transport system secretes large amounts of its substrate protein (it is estimated that RsaA accounts for 10 to 12% of the total cell protein). Such levels are expected for bacterial S-layer proteins but are higher than for any other known type I secretion system.  相似文献   

10.
Strains of Caulobacter crescentus elaborate an S-layer, a two-dimensional protein latticework which covers the cell surface. The S-layer protein (RsaA) is secreted by a type I mechanism (relying on a C-terminal signal) and is unusual among type I secreted proteins because high levels of protein are produced continuously. In efforts to adapt the S-layer for display of foreign peptides and proteins, we noted a proteolytic activity that affected S-layer monomers with foreign inserts. The cleavage was precise, resulting in fragments with an unambiguous N-terminal sequence. We developed an assay to screen for loss of this activity (i.e., presentation of foreign peptides without degradation), using transposon and traditional mutagenesis. A metalloprotease gene designated sap (S-layer-associated protease) was identified which could complement the protease-negative mutants. The N-terminal half of Sap possessed significant similarity to other type I secreted proteases (e.g., alkaline protease of Pseudomonas aeruginosa), including the characteristic RTX repeat sequences, but the C-terminal half which normally includes the type I secretion signal exhibited no such similarity. Instead, there was a region of significant similarity to the N-terminal region of RsaA. We hypothesize that Sap evolved by combining the catalytic portion of a type I secreted protease with an S-layer-like protein, perhaps to associate with nascent S-layer monomers to "scan" for modifications.  相似文献   

11.
The immunoglobulin G (IgG)-binding streptococcal protein G is often used for immunoprecipitation or immunoadsorption-based assays, as it exhibits binding to a broader spectrum of host species IgG and IgG subclasses than the alternative, Staphylococcus aureus protein A. Caulobacter crescentus produces a hexagonally arranged paracrystalline protein surface layer (S-layer) composed of a single secreted protein, RsaA, that is notably tolerant of heterologous peptide insertions while maintaining the surface-attached crystalline character. Here, a protein G IgG-binding domain, GB1, was expressed as an insertion into full-length RsaA on the cell surface to produce densely packed immunoreactive particles. GB1 insertions at five separate sites were expressed, and all bound rabbit and goat IgG, but expression levels were reduced compared to those of wild-type RsaA and poor binding to mouse IgG was noted. To remedy this, we used the 20-amino-acid Muc1 peptide derived from human mucins as a spacer, since insertions of multiple tandem repeats were well tolerated for RsaA secretion and assembly. This strategy worked remarkably well, and recombinant RsaA proteins, containing up to three GB1 domains, surrounded by Muc1 peptides, not only were secreted and assembled but did so at wild-type levels. The ability to bind IgG (including mouse IgG) increased as GB1 units were added, and those with three GB1 domains bound twice as much rabbit IgG per cell as S. aureus cells (Pansorbin). The ability of recombinant protein G-Caulobacter cells to function as immunoactive reagents was assessed in an immunoprecipitation assay using a FLAG-tagged protein and anti-FLAG mouse monoclonal antibody; their performance was comparable to that of protein G-Sepharose beads. This work demonstrates the potential for using cells expressing recombinant RsaA/GB1 in immunoassays, especially considering that protein G-Caulobacter cells are more cost-effective than protein G beads and exhibit a broader species and IgG isotype binding range than protein A.  相似文献   

12.
13.
Caulobacter crescentus CB15 is a dimorphic bacterium that is best known as a prokaryotic model for cell development. However, it is also being exploited in biotechnology, where the crystalline surface (S-layer) protein secretion system has been adapted for heterologous protein display or secretion. Because the S-layer attaches to the cell surface via lipopolysaccharide (LPS) and since the LPS represents a potential endotoxin contaminant of recombinant proteins, the lipid A component was examined in detail. LPS was acid hydrolyzed to obtain crude lipid A, which was methylated and purified by HPLC. HPLC peak fractions were analyzed by mass spectrometry and nuclear magnetic resonance spectroscopy. The structure of the major lipid A of C. crescentus comprised the tetrasaccharide backbone alpha-D-GalpA-(1-->4)-beta-D-DAG-(1-->6)-alpha-D-DAG-(1-->1)-alpha-D-GalpA substituted with six fatty acids, and a molecular mass of 1875 (GalpA, galactopyranuronic acid; DAG, 2,3-diamino-2,3-dideoxyglucopyranose). No phosphate residues were detected. The major lipid A component had 12:0[3-O[Delta(5)-12:1(3-OH)]] and 12:0[3-O(Delta(5)-12:1)] fatty acyl chains at either the 3'- or the 2' positions of the distal subunit DAG B, and 12:0(3-OH) and 12:0[3,6-(OH)( 2)] fatty acyl chains at 3- and 2- positions of the reducing end subunit DAG A, respectively. In addition, several other variations in the structure were observed. The LPS was evaluated for TNF-alpha inducing activity and consistent with its unusual lipid A structure (relative to that of enteric bacteria), the activity was reduced by greater than 100-fold as compared to Escherichia coli ReLPS. This and other evidence suggests the potential application of this lipid A as a vaccine adjuvant or the suitability of Caulobacter displaying antigens for formulation of whole cell vaccines.  相似文献   

14.
Transport of RsaA, the crystalline S-layer subunit protein of Caulobacter crescentus, is mediated by a type I secretion mechanism. Two proteins have been identified that play the role of the outer membrane protein (OMP) component in the RsaA secretion machinery. The genes rsaF(a) and rsaF(b) were identified by similarity to the Escherichia coli hemolysin secretion OMP TolC by using the C. crescentus genome sequence. The rsaF(a) gene is located several kilobases downstream of the other transporter genes, while rsaF(b) is completely unlinked. An rsaF(a) knockout had approximately 56% secretion compared to wild-type levels, while the rsaF(b) knockout reduced secretion levels to approximately 79%. When expression of both proteins was eliminated, there was no RsaA secretion, but a residual level of approximately 9% remained inside the cell, suggesting posttranslational autoregulation. Complementation with either of the individual rsaF genes by use of a multicopy vector, which resulted in 8- to 10-fold overexpression of the proteins, did not restore RsaA secretion to wild-type levels, indicating that both rsaF genes were required for full-level secretion. However, overexpression of rsaF(a) (with normal rsaF(b) levels) in concert with overexpression of rsaA resulted in a 28% increase in RsaA secretion, indicating a potential for significantly increasing expression levels of an already highly expressing type I secretion system. This is the only known example of type I secretion requiring two OMPs to assemble a fully functional system.  相似文献   

15.
目的:构建基于新月柄杆菌RsaA外运机制的以大肠杆菌为宿主的原核胞外分泌表达载体系统。方法:利用分子克隆手段,按RsaA分泌系统操纵子组织方式,将RsaA系统外运功能基因配合以异源调控序列克隆至pQE30骨架质粒。以绿色荧光蛋白(GFP)为报告分子、大肠杆菌M15为宿主茵,诱导表达后通过Western Blotting检测培养上清中GFP的表达。结果:获得了与设计完全一致的pQABPS载体,利用该载体系统,在培养上清中报告分子GFP的表达明显增加,且是通过特异的RsaA外运机制被分泌至胞外的,而非渗漏表达或简单的信号肽引导。结论:在大肠杆菌中重现了RsaA分泌系统的外运功能,为该系统在基因工程领域的应用研究打下了良好基础。  相似文献   

16.
Campylobacter fetus strains may be of serotype A or B, a property associated with lipopolysaccharide (LPS) structure. Wild-type C. fetus strains contain surface array proteins (S-layer proteins) that may be extracted in water and that are critical for virulence. To explore the relationship of S-layer proteins to other surface components, we reattached S-layer proteins onto S- template cells generated by spontaneous mutation or by serial extractions of S+ cells with water. Reattachment occurred in the presence of divalent (Ba2+, Ca2+, Co2+, and Mg2+) but not monovalent (H+, NH4+, Na+, K+) or trivalent (Fe3+) cations. The 98-, 125-, 127-, and 149-kDa S-layer proteins isolated from strains containing type A LPS (type A S-layer protein) all reattached to S- template cells containing type A LPS (type A cells) but not to type B cells. The 98-kDa type B S-layer protein reattached to SAP- type B cells but not to type A cells. Recombinant 98-kDa type A S-layer protein and its truncated amino-terminal 65- and 50-kDa segments expressed in Escherichia coli retained the full and specific determinants for attachment. S-layer protein and purified homologous but not heterologous LPS in the presence of calcium produced insoluble complexes. By quantitative enzyme-linked immunosorbent assay, the S-layer protein copy number per C. fetus cell was determined to be approximately 10(5). In conclusion, C. fetus cells are encapsulated by a large number of S-layer protein molecules which may be specifically attached through the N-terminal half of the molecule to LPS in the presence of divalent cations.  相似文献   

17.
In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.  相似文献   

18.
Stable synthesis of the hexagonally ordered (p6) S-layer protein from the wild-type strain of Bacillus stearothermophilus PV72 could be achieved in continuous culture on complex medium only under oxygen-limited conditions when glucose was used as the sole carbon source. Depending on the adaptation of the wild-type strain to low oxygen supply, the dynamics in oxygen-induced changes in S-layer protein synthesis was different when the rate of aeration was increased to a level that allowed dissimilation of amino acids. If oxygen supply was increased at the beginning of continuous culture, synthesis of the p6 S-layer protein from the wild-type strain (encoded by the sbsA gene) was immediately stopped and replaced by that of a new type of S-layer protein (encoded by the sbsB gene) which assembled into an oblique (p2) lattice. In cells adapted to a prolonged low oxygen supply, first, low-level p2 S-layer protein synthesis and second, synchronous synthesis of comparable amounts of both types of S-layer proteins could be induced by stepwise increasing the rate of aeration. The time course of changes in S-layer protein synthesis was followed up by immunogold labelling of whole cells. Synthesis of the p2 S-layer protein could also be induced in the p6-deficient variant T5. Hybridization data obtained by applying the radiolabelled N-terminal and C-terminal sbsA fragments and the N-terminal sbsB fragment to the genomic DNA of all the three organisms indicated that changes in S-layer protein synthesis were accompanied by chromosomal rearrangement. Chemical analysis of peptidoglycan-containing sacculi and extraction and recrystallization experiments revealed that at least for the wild-type strain, a cell wall polymer consisting of N-acetylglucosamine and glucose is responsible for binding of the p6 S-layer protein to the rigid cell wall layer.  相似文献   

19.
Many prokaryotic organisms (archaea and bacteria) are covered by a regularly ordered surface layer (S-layer) as the outermost cell wall component. S-layers are built up of a single protein or glycoprotein species and represent the simplest biological membrane developed during evolution. Pores in S-layers are of regular size and morphology, and functional groups on the protein lattice are aligned in well-defined positions and orientations. Due to the high degree of structural regularity S-layers represent unique systems for studying the structure, morphogenesis, and function of layered supramolecular assemblies. Isolated S-layer subunits of numerous organisms are able to assemble into monomolecular arrays either in suspension, at air/water interfaces, on planar mono- and bilayer lipid films, on liposomes and on solid supports (e.g. silicon wafers). Detailed studies on composite S-layer/lipid structures have been performed with Langmuir films, freestanding bilayer lipid membranes, solid supported lipid membranes, and liposomes. Lipid molecules in planar films and liposomes interact via their head groups with defined domains on the S-layer lattice. Electrostatic interactions are the most prevalent forces. The hydrophobic chains of the lipid monolayers are almost unaffected by the attachment of the S-layer and no impact on the hydrophobic thickness of the membranes has been observed. Upon crystallization of a coherent S-layer lattice on planar and vesicular lipid membranes, an increase in molecular order is observed, which is reflected in a decrease of the membrane tension and an enhanced mobility of probe molecules within an S-layer-supported bilayer. Thus, the terminology 'semifluid membrane' has been introduced for describing S-layer-supported lipid membranes. The most important feature of composite S-layer/lipid membranes is an enhanced stability in comparison to unsupported membranes.  相似文献   

20.
The surface protein composition of members of a serogroup of Aeromonas hydrophila which exhibit high virulence for fish was examined. Treatment of whole cells of representative strain A. hydrophila TF7 with 0.2 M glycine buffer (pH 4.0) resulted in the release of sheets of a tetragonal surface protein array. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis analysis showed that this sheet material was composed primarily of a protein of apparent molecular weight 52,000 (52K protein). A 52K protein was also the predominant protein in glycine extracts of other members of the high-virulence serogroup. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed the 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase 125I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size was required for A. hydrophila S-layer anchoring. The 52K S-layer protein exhibited hear-dependent SDS-solubilization behavior when associated with OM, but was fully solubilized at all temperatures after removal from the OM, indicating a strong interaction of the S layer with the underlying OM. The native S layer was permeable to 125I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behaviour characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号